Immunoinformatics Studies and Design of a Potential Multi-Epitope Peptide Vaccine to Combat the Fatal Visceral Leishmaniasis

被引:6
|
作者
Onile, Olugbenga Samson [1 ]
Musaigwa, Fungai [2 ]
Ayawei, Nimibofa [3 ]
Omoboyede, Victor [4 ]
Onile, Tolulope Adelonpe [5 ]
Oghenevovwero, Eyarefe [1 ]
Aruleba, Raphael Taiwo [6 ]
机构
[1] Elizade Univ, Dept Biol Sci, Biotechnol Programme, Ilara Mokin 340271, Nigeria
[2] Univ Cape Town, Fac Hlth Sci, Inst Infect Dis & Mol Med IDM, Div Immunol, ZA-7925 Cape Town, South Africa
[3] Bayelsa Med Univ, Dept Chem, Yenagoa 560001, Nigeria
[4] Fed Univ Technol Akure, Sch Life Sci SLS, Dept Biochem, Akure 340110, Nigeria
[5] Elizade Univ, Dept Biol Sci, Microbiol Programme, Ilara Mokin 340271, Nigeria
[6] Univ Cape Town, Fac Sci, Dept Mol & Cell Biol, ZA-7701 Cape Town, South Africa
关键词
visceral leishmaniasis; Leishmania donovani; vaccine; epitopes; cytotoxic T-cells; helper T-cells; TLRs; PROTEIN-STRUCTURE PREDICTION; TOXOPLASMA-GONDII; FUSION PROTEIN; WEB SERVER; REFINEMENT; ANTIBODIES; PROPERTY; ANTIGEN; DRIVEN;
D O I
10.3390/vaccines10101598
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Leishmaniasis is a neglected tropical disease caused by parasitic intracellular protozoa of the genus Leishmania. The visceral form of this disease caused by Leishmania donovani continues to constitute a major public health crisis, especially in countries of endemicity. In some cases, it is asymptomatic and comes with acute and chronic clinical outcomes such as weight loss, pancytopenia, hepatosplenomegaly, and death if left untreated. Over the years, the treatment of VL has relied solely on chemotherapeutic agents, but unfortunately, these drugs are now faced with challenges. Despite all efforts, no successful vaccine has been approved for VL. This could be as a result of limited knowledge/understanding of the immune mechanisms necessary to regulate parasite growth. Using a computational approach, this study explored the prospect of harnessing the properties of a disulfide isomerase protein of L. donovani amastigotses to develop a multi-epitope subunit vaccine candidate against the parasite. We designed a 248-amino acid multi-epitope vaccine with a predicted antigenicity probability of 0.897372. Analyses of immunogenicity, allergenicity, and multiple physiochemical parameters indicated that the constructed vaccine candidate was stable, non-allergenic, and immunogenic, making it compatible with humans and hence, a potentially viable and safe vaccine candidate against Leishmania spp. Parasites.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Design of a Multi-epitope Vaccine Against Acinetobacter baumannii Using Immunoinformatics Approach
    Touhidinia, Maryam
    Sefid, Fatemeh
    Bidakhavidi, Mozhgan
    INTERNATIONAL JOURNAL OF PEPTIDE RESEARCH AND THERAPEUTICS, 2021, 27 (04) : 2417 - 2437
  • [22] Design of a multi-epitope vaccine against cervical cancer using immunoinformatics approaches
    Sanami, Samira
    Azadegan-Dehkordi, Fatemeh
    Rafieian-Kopaei, Mahmoud
    Salehi, Majid
    Ghasemi-Dehnoo, Maryam
    Mahooti, Mehran
    Alizadeh, Morteza
    Bagheri, Nader
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [23] Design of a multi-epitope vaccine against cervical cancer using immunoinformatics approaches
    Samira Sanami
    Fatemeh Azadegan-Dehkordi
    Mahmoud Rafieian-Kopaei
    Majid Salehi
    Maryam Ghasemi-Dehnoo
    Mehran Mahooti
    Morteza Alizadeh
    Nader Bagheri
    Scientific Reports, 11
  • [24] Computational Design of a Multi-epitope Vaccine Against Clostridium chauvoei: An Immunoinformatics Approach
    Çiğdem Yılmaz Çolak
    International Journal of Peptide Research and Therapeutics, 2021, 27 : 2639 - 2649
  • [25] Design of a Multi-epitope Vaccine Against Acinetobacter baumannii Using Immunoinformatics Approach
    Maryam Touhidinia
    Fatemeh Sefid
    Mozhgan Bidakhavidi
    International Journal of Peptide Research and Therapeutics, 2021, 27 : 2417 - 2437
  • [26] Design of a multi-epitope vaccine against goatpox virus using an immunoinformatics approach
    Long, Qinqin
    Wei, Min
    Wang, Yuting
    Pang, Feng
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2024, 13
  • [27] Design of a Multi-Epitope Vaccine against Histoplasma capsulatum through Immunoinformatics Approaches
    Marques, Pedro Henrique
    Tiwari, Sandeep
    Felice, Andrei Giacchetto
    Jaiswal, Arun Kumar
    Aburjaile, Flavia Figueira
    Azevedo, Vasco
    Silva-Vergara, Mario Leon
    Ferreira-Paim, Kennio
    Soares, Siomar de Castro
    Fonseca, Fernanda Machado
    JOURNAL OF FUNGI, 2024, 10 (01)
  • [28] Novel multi-epitope vaccine design against Mycobacterium tuberculosis: An Immunoinformatics strategy
    Ranganathan, Dhakshinamoorthy Dhayanitha
    Ramanathan, Karuppasamy
    RESEARCH JOURNAL OF BIOTECHNOLOGY, 2023, 18 (10): : 60 - 68
  • [29] A Novel Design of Multi-epitope Vaccine Against Helicobacter pylori by Immunoinformatics Approach
    Ma, Junfei
    Qiu, Jingxuan
    Wang, Shuying
    Ji, Qianyu
    Xu, Dongpo
    Wang, Haiwang
    Wu, Zhiguang
    Liu, Qing
    INTERNATIONAL JOURNAL OF PEPTIDE RESEARCH AND THERAPEUTICS, 2021, 27 (02) : 1027 - 1042
  • [30] Computational Design of a Multi-epitope Vaccine Against Clostridium chauvoei: An Immunoinformatics Approach
    Yilmaz Colak, Cigdem
    INTERNATIONAL JOURNAL OF PEPTIDE RESEARCH AND THERAPEUTICS, 2021, 27 (04) : 2639 - 2649