This paper is concerned with investigating singular hyperbolic flows. It is shown that an eigenfunction cannot be continuous on an ergodic component containing a fixed point. However, it is continuous on a certain set (after a modification on a nullset). The following alternative is established: either there exists an eigenfunction on an ergodic component or the flow is mixing on this component. Sufficient conditions for mixing are given.
机构:
Univ Estado Rio De Janeiro, Inst Matemat & Estat, Rua Sao Francisco Xavier 524, BR-20550900 Rio De Janeiro, RJ, BrazilUniv Fed Fluminense, Inst Matemat & Estat, Rua Prof Marcos Waldemar Freitas S-N, BR-24210201 Niteroi, RJ, Brazil
Soufi, Mohammad
SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES,
2025,
19
(01):
机构:
Univ Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, Brazil
Univ Porto, Ctr Matemat, P-4169007 Oporto, PortugalUniv Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, Brazil
Araujo, V.
Pacifico, M. J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, Brazil
Pacifico, M. J.
Pujals, E. R.
论文数: 0引用数: 0
h-index: 0
机构:
IMPA, BR-22460320 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, Brazil
Pujals, E. R.
Viana, M.
论文数: 0引用数: 0
h-index: 0
机构:
IMPA, BR-22460320 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, Brazil