Low frequency noise in reverse biased P-InAsSbP/n-InAs infrared photodiodes

被引:9
|
作者
Dyakonova, N. [1 ]
Karandashev, S. A. [2 ]
Levinshtein, M. E. [2 ]
Matveev, B. A. [2 ]
Remennyi, M. A. [2 ]
机构
[1] Univ Montpellier, CNRS, L2C, Montpellier, France
[2] Ioffe Inst, Politekhnheskaya 26, St Petersburg, Russia
关键词
Mid-IR photodetectors; InAs photodiodes; low frequency noise; backward bias; photovoltaic mode; 1/F NOISE; OPERATION;
D O I
10.1088/1361-6641/aaf0c6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report the first experimental study of low-frequency noise in reverse biased P-InAsSbP/n-InAs infrared photodiodes at 300 K and 77 K. At room temperature, the current noise spectral density, S-I, depends on frequency as 1/f over the entire current range and tends to the Nyquist noise when the frequency increases. At small reverse currents I-rb <= 3 x 10(-5) A, S-I is proportional to I-rb(2); at higher currents this dependence changes to S-I similar to I-rb(4). With temperature decrease down to 77 K, S-I becomes proportional to I-rb(0.5) , while the reverse current decreases and the differential resistance grows by 4 orders of magnitude. The noise was also studied in the photovoltaic mode at 100 K, where S-I is proportional to I-ph(2). We conclude that at 100 K, the Nyquist noise is dominant and can be used for estimations of the specific detectivity of P-InAsSbP/n-InAs diodes.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Low frequency noise in p-InAsSbP/n-InAs infrared photodiodes
    Dyakonova, N.
    Karandashev, S. A.
    Levinshtein, M. E.
    Matveev, B. A.
    Remennyi, M. A.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2018, 33 (06)
  • [2] Cooled P-InAsSbP/n-InAs/N-InAsSbP double heterostructure photodiodes
    Brunkov, P. N.
    Il'inskaya, N. D.
    Karandashev, S. A.
    Lavrov, A. A.
    Matveev, B. A.
    Remennyi, M. A.
    Stus, N. M.
    Usikova, A. A.
    INFRARED PHYSICS & TECHNOLOGY, 2014, 64 : 62 - 65
  • [3] Low frequency noise in p-InAsSbP/n-InAs/n-InAsSbP and p-InAsSbP/n-InAsSbP mid-IR light emitting diodes
    Dyakonova, N.
    Karandashev, S. A.
    Levinshtein, M. E.
    Matveev, B. A.
    Remennyi, M. A.
    INFRARED PHYSICS & TECHNOLOGY, 2022, 125
  • [4] Low frequency noise in reverse biased double heterostructure P-InAsSb/n-InAs infrared photodiodes
    Dyakonova, N.
    Karandashev, S. A.
    Levinshtein, M. E.
    Matveev, B. A.
    Remennyi, M. A.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2020, 35 (07)
  • [5] Low frequency noise in P-InAsSbP/n-InAs infrared light emitting diode-photodiode pairs
    Dyakonova, N.
    Karandashev, S. A.
    Levinshtein, M. E.
    Matveev, B. A.
    Remennyi, M. A.
    Usikova, A. A.
    INFRARED PHYSICS & TECHNOLOGY, 2021, 117 (117)
  • [6] Room temperature low frequency noise in n+-InAs/n-InAsSbP/InAs/p-InAsSbP double heterostructure infrared photodiodes
    Dyakonova, N., V
    Karandashev, S. A.
    Levinshtein, M. E.
    Matveev, B. A.
    Remennyi, M. A.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2019, 34 (10)
  • [7] Negative luminescence in p-InAsSbP/n-InAs diodes
    Aidaraliev, M
    Zotova, NV
    Karandashev, SA
    Matveev, BA
    Remennyi, MA
    Stus', NM
    Talalakin, GN
    SEMICONDUCTORS, 2001, 35 (03) : 321 - 324
  • [8] Negative luminescence in p-InAsSbP/n-InAs diodes
    M. Aidaraliev
    N. V. Zotova
    S. A. Karandashev
    B. A. Matveev
    M. A. Remennyi
    N. M. Stus’
    G. N. Talalakin
    Semiconductors, 2001, 35 : 321 - 324
  • [9] Low dark current P-InAsSbP/n-InAs/N-InAsSbP/n+-InAs double heterostructure back-side illuminated photodiodes
    Brunkov, P. N.
    Il'inskaya, N. D.
    Karandashev, S. A.
    Karpukhina, N. G.
    Lavrov, A. A.
    Matveev, B. A.
    Remennyi, M. A.
    Stus, N. M.
    Usikova, A. A.
    INFRARED PHYSICS & TECHNOLOGY, 2016, 76 : 542 - 545
  • [10] Low frequency noise in double heterostructure P-InAsSbP/n-InAs mid-IR photodiodes at cryogenic temperature: Photovoltaic mode and forward bias
    Dyakonova, N.
    Karandashev, S. A.
    Levinshtein, M. E.
    Matveev, B. A.
    Remennyi, M. A.
    INFRARED PHYSICS & TECHNOLOGY, 2020, 111