High-gain photorefractive reflection gratings in layered photoconductive polymers

被引:15
|
作者
Kwon, OP [1 ]
Montemezzani, G
Günter, P
Lee, SH
机构
[1] ETH Honggerberg, Swiss Fed Inst Technol, Nonlinear Opt Lab, CH-8093 Zurich, Switzerland
[2] Ajou Univ, Dept Mol Sci & Technol, Suwon 442749, South Korea
关键词
D O I
10.1063/1.1638900
中图分类号
O59 [应用物理学];
学科分类号
摘要
Large two-wave mixing gain in reflection grating geometry is obtained in layered organic photorefractive polymers doped with the chromophore piperidinodicyanostyrene. With an applied field of 60 V/mum and for a grating spacing of 0.205 mum, one measures a two-wave mixing gain coefficient of 104 cm(-1) and a diffraction efficiency of 4.8% in 100-mum-thick samples. Our photorefractive and electrochemical investigations suggest that the excellent material performance in reflection grating geometry is associated with an increased effective number of trapping sites. (C) 2004 American Institute of Physics.
引用
收藏
页码:43 / 45
页数:3
相关论文
共 50 条
  • [31] Gain enhancement by moving gratings in a photorefractive polymer
    Grunnet-Jepsen, A
    Thompson, CL
    Moerner, WE
    [J]. OPTICS COMMUNICATIONS, 1998, 145 (1-6) : 145 - 149
  • [32] Diffraction analysis of layered structures of photorefractive gratings
    De, Vre, Raymond
    Hesselink, Lambertus
    [J]. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1996, 13 (02):
  • [33] Diffraction analysis of layered structures of photorefractive gratings
    DeVre, R
    Hesselink, L
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1996, 13 (02): : 285 - 295
  • [34] Photoconductive fatigue studies in fast photorefractive polymers.
    Herlocker, JA
    Ferrio, KB
    Hendrickx, E
    Zhang, YD
    Wang, JF
    Mash, E
    Peyghambarian, N
    Kippelen, B
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 220 : U340 - U340
  • [35] Diffraction analysis of layered structures of photorefractive gratings
    Department of Applied Physics, Stanford University, Stanford, CA 94305, United States
    不详
    [J]. J Opt Soc Am A, 2 (285-295):
  • [36] Effect of current filament characteristics on the output current of high-gain photoconductive semiconductor switch
    Jiang, Zenggong
    Shi, Wei
    Hou, Lei
    Gui, Huaimeng
    Ji, Weili
    Ma, Cheng
    Zhang, Lin
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (19)
  • [37] Enhanced gain dynamics in photorefractive polymers
    Liebig, C. M.
    Basun, S.
    Buller, S. S.
    Evans, D. R.
    Banerjee, P. P.
    Blanche, P. A.
    Christensen, C. W.
    Peyghambarian, N.
    Thomas, J.
    [J]. PHOTONIC FIBER AND CRYSTAL DEVICES: ADVANCES IN MATERIALS AND INNOVATIONS IN DEVICE APPLICATIONS VII, 2013, 8847
  • [38] Doped contacts for high-longevity optically activated, high-gain GaAs photoconductive semiconductor switches
    Mar, A
    Loubriel, GM
    Zutavern, FJ
    O'Malley, MW
    Helgeson, WD
    Brown, DJ
    Hjalmarson, HP
    Baca, AG
    Thornton, RL
    Donaldson, RD
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2000, 28 (05) : 1507 - 1511
  • [39] REFLECTION SUPPRESSION FOR A HIGH-GAIN CO2-LASER SYSTEM
    SOLLID, JE
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1977, 67 (10) : 1405 - 1405
  • [40] Layered high-gain lens antennas via discrete optical transformation
    Jiang, Wei Xiang
    Cui, Tie Jun
    Ma, Hui Feng
    Yang, Xin Mi
    Cheng, Qiang
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (22)