High-throughput, high-force probing of DNA-protein interactions with magnetic tweezers

被引:23
|
作者
Berghuis, Bojk A. [1 ]
Kober, Mariana [1 ]
van Laar, Theo [1 ]
Dekker, Nynke H. [1 ]
机构
[1] Delft Univ Technol, Kavli Inst Nanosci, Fac Sci Appl, Dept Bionanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
基金
欧洲研究理事会;
关键词
Magnetic tweezers; High-throughput; DNA construct design; Tus-Ter; SV40 large T antigen helicase; LARGE TUMOR-ANTIGEN; SINGLE-MOLECULE; RNA-POLYMERASE; PERSISTENCE LENGTH; HELICASE ACTIVITY; REPLICATION FORK; SUPERCOILED DNA; T-ANTIGEN; MECHANISM; TOPOISOMERASE;
D O I
10.1016/j.ymeth.2016.03.025
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in high-throughput single-molecule magnetic tweezers have paved the way for obtaining information on individual molecules as well as ensemble-averaged behavior in a single assay. Here we describe how to design robust high-throughput magnetic tweezers assays that specifically require application of high forces (>20 pN) for prolonged periods of time (>1000 s). We elaborate on the strengths and limitations of the typical construct types that can be used and provide a step-by-step guide towards a high tether yield assay based on two examples. Firstly, we discuss a DNA hairpin assay where force-induced strand separation triggers a tight interaction between DNA-binding protein Tus and its binding site Ter, where forces up to 90 pN for hundreds of seconds were required to dissociate Tus from Ter. Secondly, we show how the LTag helicase of Simian virus 40 unwinds dsDNA, where a load of 36 pN optimizes the assay readout. The approaches detailed here provide guidelines for the high-throughput, quantitative study of a wide range of DNA-protein interactions. (C) 2016 The Authors. Published by Elsevier Inc.
引用
收藏
页码:90 / 98
页数:9
相关论文
共 50 条
  • [41] MULTIPLE DNA-PROTEIN INTERACTIONS GOVERNING HIGH-PRECISION DNA TRANSACTIONS
    ECHOLS, H
    SCIENCE, 1986, 233 (4768) : 1050 - 1056
  • [42] Patterned magnetic bar array for high-throughput DNA detection
    Roberts, LA
    Crawford, AM
    Zappe, S
    Jain, M
    White, RL
    IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (04) : 3006 - 3008
  • [43] ChIP-seq: Using high-throughput sequencing to discover protein-DNA interactions
    Schmidt, Dominic
    Wilson, Michael D.
    Spyrou, Christiana
    Brown, Gordon D.
    Hadfield, James
    Odom, Duncan T.
    METHODS, 2009, 48 (03) : 240 - 248
  • [44] High-throughput Protein Crystallization
    Hiraki, Masahiko
    Kato, Ryuichi
    Yamada, Yusuke
    Matsugaki, Naohiro
    Igarashi, Noriyuki
    Wakatsuki, Soichi
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2005, 61 : C149 - C150
  • [45] High-throughput protein nanopatterning
    Liu, Xiangyu
    Kumar, Mohit
    Calo, Annalisa
    Albisetti, Edoardo
    Zheng, Xiaouri
    Manning, Kylie B.
    Elacqua, Elisabeth
    Weck, Marcus
    Ulijn, Rein, V
    Riedo, Elisa
    FARADAY DISCUSSIONS, 2019, 219 : 33 - 43
  • [46] A High-Throughput Platform for Probing Mechanisms of Transcription Factor-DNA Binding
    Aditham, Arjun
    Fordyce, Polly M.
    BIOPHYSICAL JOURNAL, 2019, 116 (03) : 502A - 502A
  • [47] High-throughput protein crystallization
    Stevens, RC
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2000, 10 (05) : 558 - 563
  • [48] High-throughput protein crystallization
    Hui, R
    Edwards, A
    JOURNAL OF STRUCTURAL BIOLOGY, 2003, 142 (01) : 154 - 161
  • [49] High-throughput protein sequencing
    Pham, V
    Tropea, J
    Wong, S
    Quach, J
    Henzel, WJ
    ANALYTICAL CHEMISTRY, 2003, 75 (04) : 875 - 882
  • [50] HIGH-THROUGHPUT PROTEIN CRYSTALLIZATION
    Chayen, Naomi E.
    STRUCTURAL GENOMICS, PART C, 2009, 77 : 1 - 22