Shifted nondiffractive Bessel beams

被引:20
|
作者
Kovalev, Alexey A. [1 ]
Kotlyar, Victor V.
Porfirev, Alexey A.
机构
[1] Russian Acad Sci, Image Proc Syst Inst, Laser Measurements Lab, Samara 443001, Russia
来源
PHYSICAL REVIEW A | 2015年 / 91卷 / 05期
关键词
ORBITAL ANGULAR-MOMENTUM; DIFFRACTION-FREE BEAMS; LASER-BEAMS; LIGHT-BEAM; GENERATION; MODES; ALGORITHM; DENSITY; VECTOR; OPTICS;
D O I
10.1103/PhysRevA.91.053840
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Nondiffractive Bessel beams are well known to have infinite energy and infinite orbital angular momentum (OAM). However, when normalized to unity of energy, their OAM is finite. In this work, we derive an analytical relationship for calculating the normalized OAM of the superposition of off-axis Bessel beams characterized by the same topological charge. We show that if the constituent beams of the superposition have real-valued weight coefficients, the total OAM of the superposition of the Bessel beams equals that of an individual nonshifted Bessel beam. This property enables generating nondiffractive beams with different intensity distributions but identical OAM. The superposition of a set of identical Bessel beams centered on an arbitrary-radius circle is shown to be equivalent to an individual constituent Bessel beam put in the circle center. As a result of a complex shift of the Bessel beam, the transverse intensity distribution and OAM of the beam are also shown to change. We show that, in the superposition of two or more complex-shifted Bessel beams, the OAM may remain unchanged, while the intensity distribution is changed. Numerical simulation is in good agreement with theory.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Shear Wave Elasticity Imaging Using Nondiffractive Bessel Apodized Acoustic Radiation Force
    Feng, Fan
    Goswami, Soumya
    Khan, Siladitya
    McAleavey, Stephen A.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2021, 68 (12) : 3528 - 3539
  • [32] Nondiffractive Subwavelength Wave Beams in a Medium with Externally Controlled Anisotropy
    Schneider, T.
    Serga, A. A.
    Chumak, A. V.
    Sandweg, C. W.
    Trudel, S.
    Wolff, S.
    Kostylev, M. P.
    Tiberkevich, V. S.
    Slavin, A. N.
    Hillebrands, B.
    PHYSICAL REVIEW LETTERS, 2010, 104 (19)
  • [33] Propagation of obstructed Bessel and Bessel-Gauss beams
    Litvin, Igor A.
    McLaren, Melanie G.
    Forbes, Andrew
    LASER BEAM SHAPING IX, 2008, 7062
  • [34] Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring
    Velpula, P. K.
    Bhuyan, M. K.
    Courvoisier, F.
    Zhang, H.
    Colombier, J. P.
    Stoian, R.
    LASER & PHOTONICS REVIEWS, 2016, 10 (02) : 230 - 244
  • [35] Radius of curvature of Bessel and modified Bessel Gaussian beams
    Eyyuboglu, Halil Tanyer
    Ji, Xiaoling
    OPTICS COMMUNICATIONS, 2013, 298 : 30 - 33
  • [36] Bessel-Bessel-Gaussian vortex laser beams
    Kotlyar, Victor V.
    Abramochkin, Eugeny G.
    Kovalev, Alexey A.
    JOURNAL OF OPTICS, 2024, 26 (10)
  • [37] Creation of generalized spiraling bessel beams by fresnel diffraction of Bessel–Gaussian laser beams
    E. M. El Halba
    L. Ez-zariy
    A. Belafhal
    Optical and Quantum Electronics, 2017, 49
  • [38] Nondiffractive three-dimensional polarization features of optical vortex beams
    Afanasev, Andrei
    Kingsley-Smith, Jack J.
    Rodriguez-Fortugno, Francisco J.
    Zayats, Anatoly, V
    ADVANCED PHOTONICS NEXUS, 2023, 2 (02):
  • [39] Efficient sorting of Bessel beams
    Mhlanga, T.
    Dudley, A.
    McDonald, A.
    Roux, F. S.
    Lavery, M.
    Padgett, M.
    Forbes, A.
    COMPLEX LIGHT AND OPTICAL FORCES VII, 2013, 8637
  • [40] Direct generation of Bessel beams
    Muys, P
    Vandamme, E
    APPLIED OPTICS, 2002, 41 (30) : 6375 - 6379