Inverted scanning microwave microscope for in vitro imaging and characterization of biological cells

被引:23
|
作者
Farina, Marco [1 ]
Jin, Xin [2 ]
Fabi, Gianluca [1 ]
Pavoni, Eleonora [1 ]
di Donato, Andrea [1 ]
Mencarelli, Davide [1 ]
Morini, Antonio [1 ]
Piacenza, Francesco [3 ]
Al Hadi, Richard [4 ]
Zhao, Yan [4 ]
Ning, Yaqing [2 ]
Pietrangelo, Tiziana [5 ]
Cheng, Xuanhong [6 ,7 ]
Hwang, James C. M. [2 ]
机构
[1] Univ Politecn Marche, Dept Informat Engn, Via Brecce Bianche, I-60131 Ancona, Italy
[2] Lehigh Univ, Dept Elect & Comp Engn, Bethlehem, PA 18015 USA
[3] IRCCS, INRCA, Sci Technol Area, Adv Technol Ctr Aging Res, Via Birarelli 8, I-60121 Ancona, Italy
[4] Alcatera LLC, Los Angeles, CA 90024 USA
[5] Univ G dAnnunzio, Dept Neurosci Imaging & Clin Sci, I-66013 Chieti, Italy
[6] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA
[7] Lehigh Univ, Dept Bioengn, Bethlehem, PA 18015 USA
关键词
GIGAHERTZ FREQUENCIES; ELECTRIC PERMITTIVITY;
D O I
10.1063/1.5086259
中图分类号
O59 [应用物理学];
学科分类号
摘要
This paper presents an instrument called an inverted scanning microwave microscope (iSMM), which is capable of performing noninvasive and label-free imaging and characterization of intracellular structures of a live cell on the nanometer scale. In particular, the iSMM is sensitive to not only surface structures but also electromagnetic properties up to one micrometer below the surface. Conveniently, the iSMM can be constructed through straightforward conversion of any scanning probe microscope, such as an atomic force microscope and a scanning tunneling microscope, with a simple metal probe to outperform a traditional SMM in terms of ruggedness, bandwidth, sensitivity, and dynamic range. By contrast, the application of the traditional SMM to date has been limited to mainly surface physics and semiconductor technology because the traditional SMM requires a fragile and expensive probe and is incompatible with saline solution or live cells.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Robotic On-Wafer Probe Station for Microwave Characterization in a Scanning Electron Microscope
    Haddadi, K.
    El Fellahi, A.
    Marzouk, J.
    Arscott, S.
    Boyaval, C.
    Lasri, T.
    Dambrine, G.
    2015 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2015,
  • [32] Development of variable temperature scanning microwave microscope for high throughput materials characterization
    Okazaki, Noriaki
    Okazaki, Sohei
    Takahashi, Ryota
    Murakami, Makoto
    Ahmet, Parhat
    Kakiuchi, Nobuyuki
    Furusho, Hiroshi
    Nishino, Taito
    Furubayashi, Yutaka
    Fukumura, Tomoteru
    Mastumoto, Yuji
    Kawasaki, Masashi
    Chikyow, Toyohiro
    Koinuma, Hideomi
    Hasegawa, Tetsuya
    COMBINATORIAL METHODS AND INFORMATICS IN MATERIALS SCIENCE, 2006, 894 : 55 - +
  • [33] High-speed line-scanning confocal microscope for biological imaging
    Jung, Seung-Hwan
    Kim, Chang-Keun
    Ju, Sung-Bin
    Cho, Yong-Jin
    Jeong, Hyun-Woo
    Kim, Beop-Min
    THREE-DIMENSIONAL AND MULTIDIMENSIONAL MICROSCOPY: IMAGE ACQUISITION AND PROCESSING XIV, 2007, 6443
  • [34] Scanning Transmission Electron Microscopy in a Scanning Electron Microscope for the High-Throughput Imaging of Biological Assemblies
    Parker, Kelly A.
    Ribet, Stephanie
    Kimmel, Blaise R.
    dos Reis, Roberto
    Mrksich, Milan
    Dravid, Vinayak P.
    BIOMACROMOLECULES, 2022, 23 (08) : 3235 - 3242
  • [35] SCANNING LASER MICROSCOPE FOR BIOLOGICAL INVESTIGATIONS
    DAVIDOVI.P
    EGGER, MD
    APPLIED OPTICS, 1971, 10 (07): : 1615 - &
  • [36] Imaging the p-n junction in a gallium nitride nanowire with a scanning microwave microscope
    Imtiaz, Atif
    Wallis, Thomas M.
    Weber, Joel C.
    Coakley, Kevin J.
    Brubaker, Matt D.
    Blanchard, Paul T.
    Bertness, Kris A.
    Sanford, Norman A.
    Kabos, Pavel
    APPLIED PHYSICS LETTERS, 2014, 104 (26)
  • [37] Quantitative imaging of dielectric permittivity and tunability with a near-field scanning microwave microscope
    Steinhauer, DE
    Vlahacos, CP
    Wellstood, FC
    Anlage, SM
    Canedy, C
    Ramesh, R
    Stanishevsky, A
    Melngailis, J
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2000, 71 (07): : 2751 - 2758
  • [38] A Study on Spatial Resolution of the Microwave Atomic Force Microscope Imaging Affected by Scanning Speed
    Zhang, Lan
    Hosoi, Atsushi
    Ju, Yang
    ADVANCED MATERIALS SCIENCE AND TECHNOLOGY, (IFAMST-8), 2013, 750 : 200 - 203
  • [39] Specialized scanning ion-conductance microscope for imaging of living cells
    Korchev, YE
    Milovanovic, M
    Bashford, CL
    Bennett, DC
    Sviderskaya, EV
    Vodyanoy, I
    Lab, MJ
    JOURNAL OF MICROSCOPY-OXFORD, 1997, 188 : 17 - 23
  • [40] A METALLIC REPLICA ANCHORING TECHNIQUE FOR SCANNING TUNNELING MICROSCOPE OR ATOMIC FORCE MICROSCOPE IMAGING OF LARGE BIOLOGICAL STRUCTURES
    BLACKFORD, BL
    JERICHO, MH
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1991, 9 (02): : 1253 - 1258