Elliptic equations with absorption in a half-space

被引:1
|
作者
Garcia-Melian, J. [1 ,2 ]
Quaas, A. [3 ]
Sirakov, B. [4 ]
机构
[1] Univ La Laguna, Dept Anal Matemat, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38271, Spain
[2] Univ La Laguna, Inst Univ Estudios Avanzados IUdEA Fis Atom Mol &, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38203, Spain
[3] Univ Tecn Federico Santa Maria, Dept Matemat, Casilla V-110,Avda Espana 1680, Valparaiso, Chile
[4] Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, Rua Marques de Sao Vicente 225, BR-22451900 Rio de Janeiro, RJ, Brazil
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2016年 / 47卷 / 03期
关键词
Elliptic equations; non-existence; half-space; coercive problems; subsolutions; STRONG MAXIMUM PRINCIPLE; CONE-LIKE DOMAINS; POSITIVE SOLUTIONS; NONEXISTENCE;
D O I
10.1007/s00574-016-0189-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a necessary and sufficient condition, in the spirit of the classical works by Keller and Osserman, for the elliptic equation Delta u = f (u) to have a solution in a half-space of R-N. The function f is supposed to be nondecreasing and nonnegative, and we are interested in solutions whose range is where f > 0. The possibility of obtaining such a necessary and sufficient condition has been an open question for a long time.
引用
收藏
页码:811 / 821
页数:11
相关论文
共 50 条
  • [41] DIFFERENTIAL - DIFFERENCE-EQUATIONS IN A HALF-SPACE
    RABINOVICH, VS
    DIFFERENTIAL EQUATIONS, 1980, 16 (11) : 1296 - 1302
  • [42] Discrete Singular Operators and Equations in a Half-Space
    Vasilyev, A. V.
    Vasilyev, V. B.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2013, 3 (01): : 84 - 93
  • [43] HIGHER ORDER ELLIPTIC EQUATIONS IN HALF SPACE
    Muschietti, Maria Amelia
    Tournier, Federico
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2017, 58 (02): : 259 - 280
  • [44] Nonlinear elliptic equations on the upper half space
    Tang, Sufang
    Wang, Lei
    Zhu, Meijun
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (01)
  • [45] Nonexistence of Positive Solution for Quasilinear Elliptic Problems in the Half-Space
    Sebastián Lorca
    Journal of Inequalities and Applications, 2007
  • [46] On asymptotic behavior of solutions of the Dirichlet problem in half-space for linear and quasi-linear elliptic equations
    Denisov, V
    Muravnik, A
    ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 9 : 88 - 93
  • [47] Elliptic problems in the half-space with nonlinear critical boundary conditions
    Furtado, Marcelo Fernandes
    de Sousa, Karla Carolina Vicente
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 2 (06):
  • [48] MULTIPLICITY RESULTS FOR A DEGENERATE QUASILINEAR ELLIPTIC EQUATION IN HALF-SPACE
    Assuncao, R. B.
    Carriao, P. C.
    Miyagaki, O. H.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2009, 22 (7-8) : 753 - 770
  • [49] MOTION OF A VIBRATOR ON A HALF-SPACE AND ON A LAYERED HALF-SPACE
    FARRELL, WE
    GEOPHYSICS, 1979, 44 (03) : 332 - 332
  • [50] ELLIPTIC PROBLEMS WITH L1-DATA IN THE HALF-SPACE
    Amrouche, Cherif
    Nguyen, Huy Hoang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2012, 5 (03): : 369 - 397