Machine Learning for Wind Turbine Blades Maintenance Management

被引:69
|
作者
Arcos Jimenez, Alfredo [1 ]
Gomez Munoz, Carlos Quiterio [2 ]
Garcia Marquez, Fausto Pedro [1 ]
机构
[1] Castilla La Mancha Univ, Ingenium Res Grp, E-13071 Ciudad Real, Spain
[2] Univ Europea Madrid, Ingn Ind & Aeroesp, Madrid 28670, Spain
来源
ENERGIES | 2018年 / 11卷 / 01期
关键词
delamination detection; macro fiber composite; wavelet transforms; non-destructive tests; neural network; guided waves; wind turbine blade; PATTERN-RECOGNITION; AUTOREGRESSIVE MODEL; COMPOSITE STRUCTURES; DAMAGE DETECTION; LAMB WAVES; IDENTIFICATION; CLASSIFICATION; COMPONENTS; ALGORITHM; DIAGNOSIS;
D O I
10.3390/en11010013
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Delamination in Wind Turbine Blades (WTB) is a common structural problem that can generate large costs. Delamination is the separation of layers of a composite material, which produces points of stress concentration. These points suffer greater traction and compression forces in working conditions, and they can trigger cracks, and partial or total breakage of the blade. Early detection of delamination is crucial for the prevention of breakages and downtime. The main novelty presented in this paper has been to apply an approach for detecting and diagnosing the delamination WTB. The approach is based on signal processing of guided waves, and multiclass pattern recognition using machine learning. Delamination was induced in the WTB to check the accuracy of the approach. The signal is denoised by wavelet transform. The autoregressive Yule-Walker model is employed for feature extraction, and Akaike's information criterion method for feature selection. The classifiers are quadratic discriminant analysis, k-nearest neighbors, decision trees, and neural network multilayer perceptron. The confusion matrix is employed to evaluate the classification, especially the receiver operating characteristic analysis by: recall, specificity, precision, and F-score.
引用
下载
收藏
页数:16
相关论文
共 50 条
  • [31] Reinforcement fabrics for wind turbine blades
    不详
    AMERICAN CERAMIC SOCIETY BULLETIN, 2007, 86 (03): : A33 - A33
  • [32] Fatigue testing of wind turbine blades
    不详
    INSIGHT, 2008, 50 (03) : 121 - 121
  • [33] The environmental impact of wind turbine blades
    Liu, P.
    Barlow, C. Y.
    37TH RISO INTERNATIONAL SYMPOSIUM ON MATERIALS SCIENCE, 2016, 139
  • [34] Kinetic analysis of wind turbine blades
    1600, Trans Tech Publications Ltd (579-580):
  • [35] An Analysis of Fracture of Wind Turbine Blades
    Fan Dongying
    Tan Junli
    Tan Bo
    2013 FOURTH INTERNATIONAL CONFERENCE ON DIGITAL MANUFACTURING AND AUTOMATION (ICDMA), 2013, : 135 - 138
  • [36] Aeroelastic simulation of wind turbine blades
    Mahri, Z.L.
    Rouabah, M.S.
    Said, Z.
    Lecture Notes in Electrical Engineering, 2009, 11 : 313 - 323
  • [37] On the structural topology of wind turbine blades
    Buckney, Neil
    Green, Steven
    Pirrera, Alberto
    Weaver, Paul M.
    WIND ENERGY, 2013, 16 (04) : 545 - 560
  • [38] A comprehensive study on Structural Health Monitoring (SHM) of wind turbine blades by instrumenting tower using machine learning methods
    Khazaee, Meghdad
    Derian, Pierre
    Mouraud, Anthony
    RENEWABLE ENERGY, 2022, 199 : 1568 - 1579
  • [39] Materials for Wind Turbine Blades: An Overview
    Mishnaevsky, Leon, Jr.
    Branner, Kim
    Petersen, Helga Norgaard
    Beauson, Justine
    McGugan, Malcolm
    Sorensen, Bent F.
    MATERIALS, 2017, 10 (11):
  • [40] Sustainable growth [wind turbine blades]
    Platts, Jim
    Engineering and Technology, 2008, 3 (18): : 66 - 67