Engineering GPCR signaling pathways with RASSLs

被引:187
|
作者
Conklin, Bruce R.
Hsiao, Edward C.
Claeysen, Sylvie
Dumuis, Aline
Srinivasan, Supriya
Forsayeth, John R.
Guettier, Jean-Marc
Chang, W. C.
Pei, Ying
McCarthy, Ken D.
Nissenson, Robert A.
Wess, Juergen
Bockaert, Joeal
Roth, Bryan L.
机构
[1] Gladstone Inst Cardiovasc Dis, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Dept Med, San Francisco, CA 94122 USA
[3] Univ Calif San Francisco, Dept Cellular, San Francisco, CA 94122 USA
[4] Univ Calif San Francisco, Dept Mol Pharmacol, San Francisco, CA 94122 USA
[5] Univ Calif San Francisco, Vet Affairs Med Ctr, Endocrine Res Unit, San Francisco, CA 94121 USA
[6] Univ Calif San Francisco, Dept Med, San Francisco, CA 94121 USA
[7] Univ Calif San Francisco, Dept Physiol, San Francisco, CA 94121 USA
[8] CNRS, UMR 5203, Inst Genom Fonctionnelle, F-34094 Montpellier, France
[9] Inst Natl Sante & Rech Med, U661, F-34094 Montpellier, France
[10] Univ Montpellier, F-34094 Montpellier, France
[11] Univ Calif San Francisco, Dept Physiol, San Francisco, CA 94143 USA
[12] Univ Calif San Francisco, Dept Neurosurg, San Francisco, CA 94103 USA
[13] NIDDKD, Bioorgan Chem Lab, NIH, Bethesda, MD 20892 USA
[14] Univ Calif San Francisco, Grad Program Pharmaceut Sci & Pharmacogenom, San Francisco, CA 94143 USA
[15] Univ N Carolina, Dept Pharmacol, Chapel Hill, NC 27599 USA
关键词
D O I
10.1038/nmeth.1232
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We are creating families of designer G protein coupled receptors (GPCRs) to allow for precise spatiotemporal control of GPCR signaling in vivo. These engineered GPCRs, called receptors activated solely by synthetic ligands (RASSLs), are unresponsive to endogenous ligands but can be activated by nanomolar concentrations of pharmacologically inert, drug-like small molecules. Currently, RASSLs exist for the three major GPCR signaling pathways (G(s), G(i) and G(q)). We review these advances here to facilitate the use of these powerful and diverse tools.
引用
收藏
页码:673 / 678
页数:6
相关论文
共 50 条
  • [41] Regulation of GPCR Signaling by Sorting Nexins
    Robleto, Valeria
    Zhuo, Ya
    Crecelius, Joseph
    Marchese, Adriano
    JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2023, 385
  • [42] Conformational dynamics in GPCR signaling by NMR
    Yunfei Hu
    Changwen Jin
    Magnetic Resonance Letters, 2022, 2 (03) : 139 - 146
  • [43] The structure of dynamic GPCR signaling networks
    O'Neill, Patrick R.
    Giri, Lopamudra
    Karunarathne, W. K. Ajith
    Patel, Anilkumar K.
    Venkatesh, K. V.
    Gautam, N.
    WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE, 2014, 6 (01) : 115 - 123
  • [44] GPCR signaling: conformational activation of arrestins
    Kahsai, Alem W.
    Pani, Biswaranjan
    Lefkowitz, Robert J.
    CELL RESEARCH, 2018, 28 (08) : 783 - 784
  • [45] Conformational dynamics in GPCR signaling by NMR
    Hu, Yunfei
    Jin, Changwen
    MAGNETIC RESONANCE LETTERS, 2022, 2 (03) : 139 - 146
  • [46] The Wnt/Frizzled GPCR Signaling Pathway
    Katanaev, V. L.
    BIOCHEMISTRY-MOSCOW, 2010, 75 (12) : 1428 - 1434
  • [47] Pleiotropic GPCR signaling in health and disease
    Hanyaloglu, Aylin C.
    Grammatopoulos, Dimitris K.
    MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2017, 449 (0C) : 1 - 2
  • [48] GPCR signaling: conformational activation of arrestins
    Alem W. Kahsai
    Biswaranjan Pani
    Robert J. Lefkowitz
    Cell Research, 2018, 28 : 783 - 784
  • [49] Biasing GPCR Signaling from Inside
    Shukla, Arun K.
    SCIENCE SIGNALING, 2014, 7 (310)
  • [50] Imaging GPCR signaling by polarization microscopy
    Miclea, Paul S.
    Markova, Vendula
    Vaitova, Zuzana
    Bondar, Alexey
    Lazar, Josef
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 85 - 85