Short-term electric vehicles charging load forecasting based on deep learning in low-quality data environments

被引:23
|
作者
Shen, Xiaodong [1 ]
Zhao, Houxiang [1 ]
Xiang, Yue [1 ]
Lan, Peng [1 ]
Liu, Junyong [1 ]
机构
[1] Sichuan Univ, Coll Elect Engn, Chengdu 610065, Peoples R China
关键词
EV short-term load forecasting; Data imputation; Data augmentation; Generative adversarial networks; Gated recurrent unit neural network; Long short-term memory neural network; TEMPORAL MODEL;
D O I
10.1016/j.epsr.2022.108247
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The accurate prediction of electric vehicles (EVs) load is the research basis for evaluating the impact of EVs on the power grid and optimizing the operation of the power grid. However, because the accumulated data of the newly operated EV charging stations are scarce, it is very challenging to use scarce data to obtain accurate prediction results. On the one hand, the missing values and outliers in the scarce dataset have a greater impact on the prediction results. On the other hand, a model with high accuracy cannot be trained using scarce datasets. To obtain accurate EV prediction results based on scarce datasets, a data generation method based on a generative adversarial network (GAN) is proposed. The proposed model is used to alleviate the influence of low-quality EVs load datasets on the prediction results. In addition, the performance of the prediction model is critical for improving the accuracy. In this study, a new gating mechanism called the Mogrifier is adopted in the long short-term memory (LSTM) network to improve its performance. Finally, the effectiveness of the proposed method is verified by experiments.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [21] Short-Term Load Forecasting Based on VMD and Combined Deep Learning Model
    Wang, Nier
    Xue, Sheng
    Li, Zhanming
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2023, 18 (07) : 1067 - 1075
  • [22] Short-Term Load Forecasting Based on Frequency Domain Decomposition and Deep Learning
    Zhang, Qian
    Ma, Yuan
    Li, Guoli
    Ma, Jinhui
    Ding, Jinjin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [23] Deep Learning Based on Multi-Decomposition for Short-Term Load Forecasting
    Kim, Seon Hyeog
    Lee, Gyul
    Kwon, Gu-Young
    Kim, Do-In
    Shin, Yong-June
    ENERGIES, 2018, 11 (12)
  • [24] Ensemble deep learning method for short-term load forecasting
    Guo, Haibo
    Tang, Lingling
    Peng, Yuexing
    2018 14TH INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SENSOR NETWORKS (MSN 2018), 2018, : 86 - 90
  • [25] Deep Learning with Stacked Denoising Auto-Encoder for Short-Term Electric Load Forecasting
    Liu, Peng
    Zheng, Peijun
    Chen, Ziyu
    ENERGIES, 2019, 12 (12)
  • [26] Short-term Load Forecasting Based on Data Mining
    Yang, Hu-Ping
    Wang, Hua
    Yan, Fei-Fei
    Zhang, Li
    2016 IEEE 20th International Conference on Computer Supported Cooperative Work in Design (CSCWD), 2016, : 170 - 173
  • [27] Short-term electric load forecasting based on improved Extreme Learning Machine Mode
    Yuan, Jie
    Wang, Lihui
    Qiu, Yajuan
    Wang, Jing
    Zhang, He
    Liao, Yuhang
    ENERGY REPORTS, 2021, 7 (07) : 1563 - 1573
  • [28] The Short-term Load Forecasting of Electric System
    Wang, Zhaoyuan
    Proceedings of the 2016 4th International Conference on Machinery, Materials and Information Technology Applications, 2016, 71 : 438 - 441
  • [29] Fuzzy short-term electric load forecasting
    Al-Kandari, AM
    Soliman, SA
    El-Hawary, ME
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2004, 26 (02) : 111 - 122
  • [30] A hybrid transfer learning model for short-term electric load forecasting
    Xu, Xianze
    Meng, Zhaorui
    ELECTRICAL ENGINEERING, 2020, 102 (03) : 1371 - 1381