KAM theorem revisited

被引:16
|
作者
Gentile, G [1 ]
Mastropietro, V [1 ]
机构
[1] UNIV ROMA TOR VERGATA,DIPARTIMENTO MATEMAT,I-00133 ROME,ITALY
来源
PHYSICA D | 1996年 / 90卷 / 03期
关键词
classical mechanics; KAM theorem; perturbation theory; euclidean quantum field theory; renormalization group;
D O I
10.1016/0167-2789(95)00251-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A combinatorial proof of the KAM theorem for the Thirring model is presented, by using renormalization group techniques usual in the formalism of quantum field theory.
引用
收藏
页码:225 / 234
页数:10
相关论文
共 50 条
  • [21] The KAM theorem on the modulus of continuity about parameters
    Zhicheng Tong
    Jiayin Du
    Yong Li
    [J]. Science China Mathematics, 2024, 67 : 577 - 592
  • [22] Weak kam theorem on non compact manifolds
    Albert Fathi
    Ezequiel Maderna
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2007, 14 : 1 - 27
  • [23] QUASI-TOPLITZ FUNCTIONS IN KAM THEOREM
    Procesi, Michela
    Xu, Xindong
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (04) : 2148 - 2181
  • [24] A KAM theorem for reversible systems of infinite dimension
    Shun Qing Chen
    Xiao Ping Yuan
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (10) : 1777 - 1796
  • [25] Weak kam theorem on non compact manifolds
    Fathi, Albert
    Maderna, Ezequiel
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 14 (1-2): : 1 - 27
  • [26] The KAM theorem on the modulus of continuity about parameters
    Tong, Zhicheng
    Du, Jiayin
    Li, Yong
    [J]. SCIENCE CHINA-MATHEMATICS, 2024, 67 (03) : 577 - 592
  • [27] The KAM theorem on the modulus of continuity about parameters
    Zhicheng Tong
    Jiayin Du
    Yong Li
    [J]. Science China Mathematics, 2024, 67 (03) : 577 - 592
  • [28] A KAM Theorem for Reversible Systems of Infinite Dimension
    Shun Qing CHEN Department of Mathematics
    [J]. Acta Mathematica Sinica,English Series, 2007, 23 (10) : 1777 - 1796
  • [29] A KAM Theorem for Reversible Systems of Infinite Dimension
    Shun Qing Chen
    Xiao Ping Yuan*
    [J]. Acta Mathematica Sinica, English Series, 2007, 23 : 1777 - 1796
  • [30] A Hamiltonian KAM theorem for bundles of Lagrangean tori
    Broer, HW
    Cushman, RH
    Fassò, F
    [J]. EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 696 - 701