CHARACTERIZATION OF FLOW REGIMES IN GAS-SOLID FLUIDIZED BEDS VIA A DATA DRIVEN FRAMEWORK

被引:0
|
作者
Kotteda, V. M. Krushnarao [1 ]
Kommu, Anitha [2 ]
Kumar, Vinod [2 ]
机构
[1] Univ Wyoming, 1000 E Univ Ave, Laramie, WY 82071 USA
[2] Univ Texas El Paso, 500 W Univ Ave, El Paso, TX 79968 USA
关键词
TIME-SERIES ANALYSIS; UNCERTAINTY QUANTIFICATION; CHAOTIC BEHAVIOR; HYDRODYNAMICS; GASIFICATION; FLUCTUATION; TRANSITION; SIMULATION; DIAMETER; DYNAMICS;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Gas-solid fluidized beds are widely used in petroleum, chemical, mineral, pharmaceutical, and power plant applications. The performance of fluidized bed reactors strongly depends on the flow dynamics. Characterization of a particle-laden flow has been one of the challenging issues in fluidization research. The simulation of flow in such processes is challenging as the complex dynamic systems comprised of numerous particles and fluidizing gas confined in specific devices. Nonlinear particle-particle/wall and particle-gas interactions lead to complex flow behavior of the gas-solid flows. We used MFiX to simulate a gas-solid flow in fluidized beds. A data-driven framework is trained with the data from MFiX-PIC simulations. The trained and tested machine learning model is used to characterize the flow regimes in fluidized beds. In the present study, the void fraction is used to characterize the flow regimes. However, others in the literature have used pressure, temperature, heat transfer coefficient, acoustic emission, vibration, and electrostatic charge for the characterization of flow regimes.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Gas-solid fluidized beds in vortex chambers
    De Wilde, Juray
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2014, 85 : 256 - 290
  • [22] GAS-SOLID HEAT TRANSER IN FLUIDIZED BEDS
    MANN, RS
    FENG, LCL
    INDUSTRIAL & ENGINEERING CHEMISTRY PROCESS DESIGN AND DEVELOPMENT, 1968, 7 (03): : 327 - &
  • [23] Information transmission and flow regimes identification in gas-solid fluidized bed
    Wang, Xiaoping
    Huang, Yilun
    Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 2003, 54 (08): : 1059 - 1064
  • [24] Critical comparison of hydrodynamic models for gas-solid fluidized beds - Part II: freely bubbling gas-solid fluidized beds
    Patil, DJ
    Annaland, AV
    Kuipers, JAM
    CHEMICAL ENGINEERING SCIENCE, 2005, 60 (01) : 73 - 84
  • [25] Investigation on gas-solid flow regimes in a novel multistage fluidized bed
    Wu, Gongpeng
    He, Yan
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2022, 46 : 21 - 30
  • [26] SOLID FLOW BEHAVIOR IN GAS-SOLID FLUIDIZED-BEDS - NEW EXPERIMENTAL TECHNIQUE
    ABRAHAMI, S
    RESNICK, W
    POWDER TECHNOLOGY, 1972, 6 (02) : 113 - &
  • [27] Critical comparison of hydrodynamic models for gas-solid fluidized beds - Part I: bubbling gas-solid fluidized beds operated with a jet
    Patil, DJ
    Annaland, MV
    Kuipers, JAM
    CHEMICAL ENGINEERING SCIENCE, 2005, 60 (01) : 57 - 72
  • [28] Hydrodynamics of gas-solid flow around immersed tubes in bubbling fluidized beds
    He, YR
    Lu, HL
    Sun, QQ
    Yang, LD
    Zhao, YH
    Gidaspow, D
    Bouillard, J
    POWDER TECHNOLOGY, 2004, 145 (02) : 88 - 105
  • [29] Effects of heterogeneous flow on carbon conversion in gas-solid circulating fluidized beds
    Nikku, Markku
    Bordbar, Hadi
    Myohanen, Kari
    Hyppanen, Timo
    FUEL, 2020, 280
  • [30] Effects of riser geometry on gas-solid flow characteristics in circulating fluidized beds
    Tu, Qiuya
    Wang, Haigang
    PARTICUOLOGY, 2020, 49 : 205 - 217