Asymptotic finite-time ruin probabilities in a dependent bidimensional renewal risk model with subexponential claims

被引:19
|
作者
Cheng, Dongya [1 ]
Yang, Yang [2 ]
Wang, Xinzhi [2 ]
机构
[1] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
[2] Nanjing Audit Univ, Dept Stat, Nanjing 211815, Peoples R China
基金
中国国家自然科学基金;
关键词
Bidimensional renewal risk model; Ruin probability; Subexponential distribution; Strongly asymptotic independence; DISCOUNTED AGGREGATE CLAIMS; UNIFORM ASYMPTOTICS; BEHAVIOR;
D O I
10.1007/s13160-020-00418-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers a bidimensional continuous-time renewal risk model, in which the two components of each pair of claim sizes are linked via the strongly asymptotic independence structure and the two claim-number processes from different lines of business are (almost) arbitrarily dependent. Precise asymptotic formulas for three kinds of finite-time ruin probabilities are established when the claim sizes have heavy-tailed tails.
引用
收藏
页码:657 / 675
页数:19
相关论文
共 50 条
  • [31] The finite-time ruin probability of the nonhomogeneous Poisson risk model with conditionally independent subexponential claims
    Cheng, Fengyang
    Xu, Hui
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (12) : 4119 - 4132
  • [32] The finite-time ruin probability in two non-standard renewal risk models with constant interest rate and dependent subexponential claims
    Yang Yang
    Jinguan Lin
    Chao Huang
    Xin Ma
    [J]. Journal of the Korean Statistical Society, 2012, 41 : 213 - 224
  • [33] The finite-time ruin probability in two non-standard renewal risk models with constant interest rate and dependent subexponential claims
    Yang, Yang
    Lin, Jinguan
    Huang, Chao
    Ma, Xin
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2012, 41 (02) : 213 - 224
  • [34] Some Asymptotic Results of the Ruin Probabilities in a Bidimensional Renewal Risk Model with Brownian Perturbation
    Lu, Dawei
    Du, Jiao
    Song, Hui
    [J]. FILOMAT, 2019, 33 (10) : 3243 - 3255
  • [35] Uniform asymptotics for finite-time ruin probabilities of a bidimensional compound risk model with stochastic returns
    Li, Mingjun
    Chen, Zhangting
    Cheng, Dongya
    Zhou, Junyi
    [J]. STATISTICS & PROBABILITY LETTERS, 2024, 207
  • [36] Finite-Time Ruin Probabilities of Bidimensional Risk Models with Correlated Brownian Motions
    Zhu, Dan
    Zhou, Ming
    Yin, Chuancun
    [J]. MATHEMATICS, 2023, 11 (12)
  • [37] ASYMPTOTIC RUIN PROBABILITIES FOR A RENEWAL RISK MODEL WITH A RANDOM NUMBER OF DELAYED CLAIMS
    Li, Jinzhu
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (06) : 3840 - 3853
  • [38] Asymptotics for a Bidimensional Renewal Risk Model with Subexponential Main Claims and Delayed Claims
    Wang, Shijie
    Yang, Yueli
    Liu, Yang
    Yang, Lianqiang
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2023, 25 (03)
  • [39] Asymptotics for a Bidimensional Renewal Risk Model with Subexponential Main Claims and Delayed Claims
    Shijie Wang
    Yueli Yang
    Yang Liu
    Lianqiang Yang
    [J]. Methodology and Computing in Applied Probability, 2023, 25
  • [40] Uniform estimates for the finite-time ruin probability in the dependent renewal risk model
    Yang, Yang
    Leipus, Remigijus
    Siaulys, Jonas
    Cang, Yuquan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 383 (01) : 215 - 225