Modeling forest biomass using Very-High-Resolution data - Combining textural, spectral and photogrammetric predictors derived from spaceborne stereo images

被引:41
|
作者
Maack, Joachim [1 ]
Kattenborn, Teja [2 ]
Fassnacht, Fabian Ewald [2 ]
Enssle, Fabian [1 ]
Hernandez, Jaime [3 ]
Corvalan, Patricio [3 ]
Koch, Barbara [1 ]
机构
[1] Univ Freiburg, Chair Remote Sensing & Landscape Informat Syst Fe, Freiburg, Germany
[2] Karlsruhe Inst Technol, Inst Geog & Geoecol IfGG, D-76021 Karlsruhe, Germany
[3] Univ Chile, Lab Geomat Ecol & Paisaje, Santiago, Chile
来源
关键词
Biomass modelling; WordView-2; Pleiades; random forest; photogrammetry; canopy height models; ABOVEGROUND BIOMASS; CANOPY HEIGHT; CROSS-VALIDATION; LIDAR; BOOTSTRAP;
D O I
10.5721/EuJRS20154814
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
We used spectral, textural and photogrammetric information from very-high resolution (VHR) stereo satellite data (Pleiades and WorldView-2) to estimate forest biomass across two test sites located in Chile and Germany. We compared Random Forest model performances of different predictor sets (spectral, textural, and photogrammetric), forest inventory designs and filter sizes (texture information). Best model performances were obtained with photogrammetric combined with either textural or spectral information and smaller, but more field plots. Stereo-VHR images showed a great potential for canopy height model (CHM) generation and could be an adequate alternative to LiDAR and InSAR techniques.
引用
收藏
页码:245 / 261
页数:17
相关论文
共 35 条
  • [21] Improved model for estimating the biomass of Populus euphratica forest using the integration of spectral and textural features from the Chinese high-resolution remote sensing satellite GaoFen-1
    Zhang, Linjing
    Cheng, Qimin
    Lia, Congmin
    JOURNAL OF APPLIED REMOTE SENSING, 2015, 9
  • [22] A High-Resolution Global Moho Model from Combining Gravimetric and Seismic Data by Using Spectral Combination Methods
    Dashtbazi, Arash
    Voosoghi, Behzad
    Bagherbandi, Mohammad
    Tenzer, Robert
    REMOTE SENSING, 2023, 15 (06)
  • [23] Identifying leading species using tree crown metrics derived from very high spatial resolution imagery in a boreal forest environment
    Mora, Brice
    Wulder, Michael A.
    White, Joanne C.
    CANADIAN JOURNAL OF REMOTE SENSING, 2010, 36 (04) : 332 - 344
  • [24] Above-ground biomass estimation for Quercus rotundifolia using vegetation indices derived from high spatial resolution satellite images
    Macedo, Fabricio L.
    Sousa, Adella M. O.
    Goncalves, Ana Cristina
    Marques da Silva, Jose R.
    Mesquita, Paulo A.
    Rodrigues, Ricardo A. F.
    EUROPEAN JOURNAL OF REMOTE SENSING, 2018, 51 (01) : 932 - 944
  • [25] Combining 3D Radiative Transfer Model and Convolutional Neural Network to Accurately Estimate Forest Canopy Cover From Very High-Resolution Satellite Images
    Jin, Decai
    Qi, Jianbo
    Huang, Huaguo
    Li, Linyuan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 10953 - 10963
  • [26] Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system
    Li, Wang
    Niu, Zheng
    Chen, Hanyue
    Li, Dong
    Wu, Mingquan
    Zhao, Wei
    ECOLOGICAL INDICATORS, 2016, 67 : 637 - 648
  • [27] Modeling of biomass potential from agricultural land for energy utilization using high resolution spatial data with regard to food security scenarios
    Vavrova, Kamila
    Knapek, Jaroslav
    Weger, Jan
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 35 : 436 - 444
  • [28] Young lava flows on the eastern flank of Ascraeus Mons: Rheological properties derived from High Resolution Stereo Camera (HRSC) images and Mars Orbiter Laser Altimeter (MOLA) data
    Hiesinger, H.
    Head, J. W., III
    Neukum, G.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2007, 112 (E5)
  • [29] Multiscale Diagnosis of Mangrove Status in Data-Poor Context Using Very High Spatial Resolution Satellite Images: A Case Study in Pichavaram Mangrove Forest, Tamil Nadu, India
    Ghosh, Shuvankar
    Proisy, Christophe
    Muthusankar, Gowrappan
    Hassenruck, Christiane
    Helfer, Veronique
    Mathevet, Raphael
    Andrieu, Julien
    Balachandran, Natesan
    Narendran, Rajendran
    REMOTE SENSING, 2022, 14 (10)
  • [30] Quantification of Lichen Cover and Biomass Using Field Data, Airborne Laser Scanning and High Spatial Resolution Optical Data-A Case Study from a Canadian Boreal Pine Forest
    Hillman, Ashley C.
    Nielsen, Scott E.
    FORESTS, 2020, 11 (06):