Modeling forest biomass using Very-High-Resolution data - Combining textural, spectral and photogrammetric predictors derived from spaceborne stereo images

被引:41
|
作者
Maack, Joachim [1 ]
Kattenborn, Teja [2 ]
Fassnacht, Fabian Ewald [2 ]
Enssle, Fabian [1 ]
Hernandez, Jaime [3 ]
Corvalan, Patricio [3 ]
Koch, Barbara [1 ]
机构
[1] Univ Freiburg, Chair Remote Sensing & Landscape Informat Syst Fe, Freiburg, Germany
[2] Karlsruhe Inst Technol, Inst Geog & Geoecol IfGG, D-76021 Karlsruhe, Germany
[3] Univ Chile, Lab Geomat Ecol & Paisaje, Santiago, Chile
来源
关键词
Biomass modelling; WordView-2; Pleiades; random forest; photogrammetry; canopy height models; ABOVEGROUND BIOMASS; CANOPY HEIGHT; CROSS-VALIDATION; LIDAR; BOOTSTRAP;
D O I
10.5721/EuJRS20154814
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
We used spectral, textural and photogrammetric information from very-high resolution (VHR) stereo satellite data (Pleiades and WorldView-2) to estimate forest biomass across two test sites located in Chile and Germany. We compared Random Forest model performances of different predictor sets (spectral, textural, and photogrammetric), forest inventory designs and filter sizes (texture information). Best model performances were obtained with photogrammetric combined with either textural or spectral information and smaller, but more field plots. Stereo-VHR images showed a great potential for canopy height model (CHM) generation and could be an adequate alternative to LiDAR and InSAR techniques.
引用
收藏
页码:245 / 261
页数:17
相关论文
共 35 条
  • [1] Spatiotemporal inferences for use in building detection using series of very-high-resolution space-borne stereo images
    Qin, Rongjun
    Tian, Jiaojiao
    Reinartz, Peter
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (15) : 3455 - 3476
  • [2] Combining multispectral images and selected textural features from high resolution images to improve discrimination of forest canopies
    Ruiz, LA
    Iñán, I
    Baridón, JE
    Lanfranco, JW
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING IV, 1998, 3500 : 124 - 134
  • [3] High-Resolution Morphology of Lunar Lava Tube Pits Using Photogrammetric Modeling of Multiple Stereo Images
    Zhou, Miyu
    Ye, Zhen
    Huang, Rong
    Zhou, Changyu
    Chen, Chen
    Chen, Hao
    Xu, Yusheng
    Tong, Xiaohua
    EARTH AND SPACE SCIENCE, 2024, 11 (11)
  • [4] Modeling forest canopy surface retrievals using very high-resolution spaceborne stereogrammetry: (I) methods and comparisons with actual data
    Yin, Tiangang
    Montesano, Paul M.
    Cook, Bruce D.
    Chavanon, Eric
    Neigh, Christopher S. R.
    Shean, David
    Peng, Dongju
    Lauret, Nicolas
    Mkaouar, Ameni
    Morton, Douglas C.
    Regaieg, Omar
    Zhen, Zhijun
    Gastellu-Etchegorry, Jean-Philippe
    REMOTE SENSING OF ENVIRONMENT, 2023, 298
  • [5] ESTIMATION OF FOREST STAND PARAMETERS BY USING THE SPECTRAL AND TEXTURAL FEATURES DERIVED FROM DIGITAL AERIAL IMAGES
    Ozkan, U. Y.
    Demirel, T.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2018, 16 (03): : 3043 - 3060
  • [6] Detecting Building Changes Using Multimodal Siamese Multitask Networks From Very-High-Resolution Satellite Images
    Li, Mengmeng
    Liu, Xuanguang
    Wang, Xiaoqin
    Xiao, Pengfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [7] Mapping the Mangrove Forest Canopy Using Spectral Unmixing of Very High Spatial Resolution Satellite Images
    Taureau, Florent
    Robin, Marc
    Proisy, Christophe
    Fromard, Francois
    Imbert, Daniel
    Debaine, Francoise
    REMOTE SENSING, 2019, 11 (03)
  • [8] Recognition Of Species Composition and Age Classes of Forest Stands Using Spectral and Textural Features Using High Resolution Satellite Images
    Dmitriev, E. V.
    Miller, P. G.
    Kozoderov, V. V.
    Sokolov, A. A.
    XLIII ACADEMIC SPACE CONFERENCE, DEDICATED TO THE MEMORY OF ACADEMICIAN S P KOROLEV AND OTHER OUTSTANDING RUSSIAN SCIENTISTS - PIONEERS OF SPACE EXPLORATION, 2019, 2171
  • [9] Biomass estimation of mixed forest landscape using a Fourier transform texture-based approach on very-high-resolution optical satellite imagery
    Singh, Minerva
    Malhi, Yadvinder
    Bhagwat, Shonil
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (09) : 3331 - 3349
  • [10] System for processing of airborne images of forest ecosystems using high spectral and spatial resolution data
    V. V. Kozoderov
    E. V. Dmitriev
    V. P. Kamentsev
    Izvestiya, Atmospheric and Oceanic Physics, 2014, 50 : 943 - 952