On a Class of Quantum Channels, Open Random Walks and Recurrence

被引:24
|
作者
Lardizabal, Carlos F. [1 ]
Souza, Rafael R. [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Matemat, BR-91509900 Porto Alegre, RS, Brazil
关键词
Quantum channel; Completely positive map; Quantum random walk; Recurrence; Markov chain; OPERATIONS; THEOREM;
D O I
10.1007/s10955-015-1217-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a particular class of trace-preserving completely positive maps, called PQ-channels, for which classical and quantum evolutions are isolated in a certain sense. By combining open quantum random walks with a notion of recurrence, we are able to describe criteria for recurrence of the walk related to this class of channels. Positive recurrence for open walks is also discussed in this context.
引用
收藏
页码:772 / 796
页数:25
相关论文
共 50 条
  • [41] Recurrence in coined quantum walks
    Kiss, T.
    Kecskes, L.
    Stefanak, M.
    Jex, I.
    PHYSICA SCRIPTA, 2009, T135
  • [42] Central Limit Theorems for Open Quantum Random Walks on the Crystal Lattices
    Ko, Chul Ki
    Konno, Norio
    Segawa, Etsuo
    Yoo, Hyun Jae
    JOURNAL OF STATISTICAL PHYSICS, 2019, 176 (03) : 710 - 735
  • [43] Central Limit Theorems for Open Quantum Random Walks on the Crystal Lattices
    Chul Ki Ko
    Norio Konno
    Etsuo Segawa
    Hyun Jae Yoo
    Journal of Statistical Physics, 2019, 176 : 710 - 735
  • [44] Open Quantum Random Walks with Decoherence on Coins with n Degrees of Freedom
    Xiong, Sheng
    Yang, Wei-Shih
    JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (03) : 473 - 492
  • [45] Open Quantum Random Walks with Decoherence on Coins with n Degrees of Freedom
    Sheng Xiong
    Wei-Shih Yang
    Journal of Statistical Physics, 2013, 152 : 473 - 492
  • [46] Growth and recurrence of stationary random walks
    Gernot Greschonig
    Klaus Schmidt
    Probability Theory and Related Fields, 2003, 125 : 266 - 270
  • [47] Growth and recurrence of stationary random walks
    Greschonig, G
    Schmidt, K
    PROBABILITY THEORY AND RELATED FIELDS, 2003, 125 (02) : 266 - 270
  • [48] Quantitative recurrence results for random walks
    Luzia, Nuno
    STOCHASTICS AND DYNAMICS, 2018, 18 (03)
  • [49] ON A CLASS OF RANDOM WALKS IN SIMPLEXES
    Nguyen, Tuan-Minh
    Volkov, Stanislav
    JOURNAL OF APPLIED PROBABILITY, 2020, 57 (02) : 409 - 428
  • [50] On the Structure of Quantum Markov Chains on Cayley Trees Associated with Open Quantum Random Walks
    Souissi, Abdessatar
    Hamdi, Tarek
    Mukhamedov, Farrukh
    Andolsi, Amenallah
    AXIOMS, 2023, 12 (09)