MICA: Multiple interval-based curve alignment

被引:6
|
作者
Mann, Martin [1 ,2 ]
Kahle, Hans-Peter [1 ]
Beck, Matthias [2 ]
Bender, Bela Johannes [1 ]
Spiecker, Heinrich [1 ]
Backofen, Rolf [2 ,3 ,4 ]
机构
[1] Univ Freiburg, Chair Forest Growth & Dendroecol, Tennenbacher Str 4, D-79106 Freiburg, Germany
[2] Univ Freiburg, Dept Comp Sci, Bioinformat Grp, Georges Kohler Allee 106, D-79110 Freiburg, Germany
[3] Univ Freiburg, Ctr Biol Signaling Studies BIOSS, Schanzlestr 18, D-79104 Freiburg, Germany
[4] Univ Freiburg, Ctr Biol Syst Anal ZBSA, Habsburgerstr 49, D-79104 Freiburg, Germany
关键词
Curve alignment; Landmark registration; Global alignment; Progressive alignment; SEQUENCE ALIGNMENT; PROFILES; SAMPLE;
D O I
10.1016/j.softx.2018.02.003
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
MICA enables the automatic synchronization of discrete data curves. To this end, characteristic points of the curves' shapes are identified. These landmarks are used within a heuristic curve registration approach to align profile pairs by mapping similar characteristics onto each other. In combination with a progressive alignment scheme, this enables the computation of multiple curve alignments. Multiple curve alignments are needed to derive meaningful representative consensus data of measured time or data series. MICA was already successfully applied to generate representative profiles of tree growth data based on intra-annual wood density profiles or cell formation data. The MICA package provides a command-line and graphical user interface. The R interface enables the direct embedding of multiple curve alignment computation into larger analyses pipelines. Source code, binaries and documentation are freely available at https://github.com/BackofenLab/MICA (C) 2018 The Authors. Published by Elsevier B.V.
引用
收藏
页码:53 / 58
页数:6
相关论文
共 50 条
  • [31] Dynamic CSPs for interval-based temporal reasoning
    Mouhoub, M
    Yip, J
    DEVELOPMENTS IN APPLIED ARTIFICAIL INTELLIGENCE, PROCEEDINGS, 2002, 2358 : 575 - 585
  • [32] Online Probabilistic Interval-Based Event Calculus
    Mantenoglou, Periklis
    Artikis, Alexander
    Paliouras, Georgios
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 2624 - 2631
  • [33] Constraint deduction in an interval-based temporal logic
    Koehler, J
    Treinen, R
    EXECUTABLE MODAL AND TEMPORAL LOGICS, 1995, 897 : 103 - 117
  • [34] An Interval-Based Framework for Fuzzy Clustering Applications
    Silva, Liliane
    Moura, Ronildo
    Canuto, Anne M. P.
    Santiago, Regivan H. N.
    Bedregal, Benjamin
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2015, 23 (06) : 2174 - 2187
  • [35] Interval-Based Visua LiDAR Sensor Fusion
    Voges, Raphael
    Wagner, Bernardo
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) : 1304 - 1311
  • [36] An interval-based technique for FE model updating
    Gabriele, Stefano
    Valente, Claudio
    International Journal of Reliability and Safety, 2009, 3 (1-3) : 79 - 103
  • [37] An interval-based algebra for restricted event detection
    Carlson, J
    Lisper, B
    FORMAL MODELING AND ANALYSIS OF TIMED SYSTEMS, 2003, 2791 : 121 - 133
  • [38] An Interval-Based Inference of Variant Parametric Types
    Craciun, Florin
    Chin, Wei-Ngan
    He, Guanhua
    Qin, Shengchao
    PROGRAMMING LANGUAGES AND SYSTEMS, PROCEEDINGS, 2009, 5502 : 112 - +
  • [39] Mining approximate interval-based temporal dependencies
    Combi, Carlo
    Sala, Pietro
    ACTA INFORMATICA, 2016, 53 (6-8) : 547 - 585
  • [40] Interval-Based Relaxation for General Numeric Planning
    Scala, Enrico
    Haslum, Patrik
    Thiebaux, Sylvie
    Ramirez, Miquel
    ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 655 - 663