Numerical analysis of a second-grade fuzzy hybrid nanofluid flow and heat transfer over a permeable stretching/shrinking sheet

被引:46
|
作者
Nadeem, Muhammad [1 ]
Siddique, Imran [1 ]
Awrejcewicz, Jan [2 ]
Bilal, Muhammad [3 ]
机构
[1] Univ Management & Technol, Dept Math, Lahore 54770, Pakistan
[2] Lodz Univ Technol, Dept Automat Biomech & Mechatron, 1-15 Stefanowskiego St, PL-90924 Lodz, Poland
[3] Univ Lahore, Dept Math, Gujrat Campus, Gujrat, Pakistan
关键词
HYDROMAGNETIC FLOW; MHD FLOW; FLUID; EXISTENCE; MODEL;
D O I
10.1038/s41598-022-05393-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, the heat transfer features and stagnation point flow of Magnetohydrodynamics (MHD) hybrid second-grade nanofluid through a convectively heated permeable shrinking/stretching sheet is reported. The purpose of the present investigation is to consider hybrid nanofluids comprising of Alumina (Al2O3) and Copper (Cu) nanoparticles within the Sodium Alginate (SA) as a host fluid for boosting the heat transfer rate. Also, the effects of free convection, viscous dissipation, heat source/sink, and nonlinear thermal radiation are considered. The converted nonlinear coupled fuzzy differential equations (FDEs) with the help of triangular fuzzy numbers (TFNs) are solved using the numerical scheme bvp4c. The numerical results are acquired for various engineering parameters to study the Nusselt number, skin friction coefficient, velocity, and temperature distribution through figures and tables. For the validation, the current numerical results were found to be good as compared to existing results in limiting cases. It is also inspected by this work that with the enhancement of the volume fraction of nanoparticles, the heat transfer rate also increases. So, it may be taken as a fuzzy parameter for a better understanding of fuzzy variables. For the comparison, the volume fraction of nanofluids and hybrid nanofluid are said to be TFN [0, 0.1, 0.2]. In the end, we can see that fuzzy triangular membership functions (MFs) have not only helped to overcome the computational cost but also given better accuracy than the existent results. Finding from fuzzy MFs, the performance of hybrid nanofluids is better than nanofluids.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Unsteady boundary layer flow of nanofluid past a permeable stretching/shrinking sheet with convective heat transfer
    Malvandi, A.
    Hedayati, F.
    Ganji, D. D.
    Rostamiyan, Y.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2014, 228 (07) : 1175 - 1184
  • [42] A numerical and statistical analysis of the unsteady ternary hybrid nanofluid flow and heat transfer over a generalized stretching/shrinking wall
    Wahid, Nur Syahirah
    Rosca, Natalia C.
    Rosca, Alin V.
    Pop, Ioan
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2025, 105 (02):
  • [43] Three-Dimensional Flow and Heat Transfer Past a Permeable Exponentially Stretching/Shrinking Sheet in a Nanofluid
    Mansur, Syahira
    Ishak, Anuar
    Pop, Ioan
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [44] Analytical and Numerical Investigation of Second Grade Magnetohydrodynamics Flow over a Permeable Stretching Sheet
    Javanmard, M.
    Taheri, M. H.
    Abbasi, M.
    JOURNAL OF COMPUTATIONAL APPLIED MECHANICS, 2020, 51 (01): : 239 - 246
  • [45] Magnetohydrodynamics (MHD) axisymmetric flow and heat transfer of a hybrid nanofluid past a radially permeable stretching/shrinking sheet with Joule heating
    Khashi'ie, Najiyah Safwa
    Arifin, Norihan Md
    Nazar, Roslinda
    Hafidzuddin, Ezad Hafidz
    Wahi, Nadihah
    Pop, Ioan
    CHINESE JOURNAL OF PHYSICS, 2020, 64 : 251 - 263
  • [46] A Spectral Relaxation Approach for Unsteady Boundary-Layer Flow and Heat Transfer of a Nanofluid over a Permeable Stretching/Shrinking Sheet
    Motsa, S. S.
    Sibanda, P.
    Ngnotchouye, J. M.
    Marewo, G. T.
    ADVANCES IN MATHEMATICAL PHYSICS, 2014, 2014
  • [47] MHD Stagnation Point Flow and Heat Transfer of a Nanofluid over a Permeable Nonlinear Stretching/Shrinking Sheet with Viscous Dissipation Effect
    Jusoh, Rahimah
    Nazar, Roslinda
    2017 UKM FST POSTGRADUATE COLLOQUIUM, 2018, 1940
  • [48] Hybrid Nanofluid Heat and Mass Transfer Characteristics Over a Stretching/Shrinking Sheet with Slip Effects
    Reddy, P. Sudarsana
    Sreedevi, P.
    Chamkha, Ali J.
    JOURNAL OF NANOFLUIDS, 2023, 12 (01) : 251 - 260
  • [49] MHD Boundary Layer Flow of Second-Grade Nanofluid over a Stretching Sheet with Convective Boundary Conditions
    Mustafa, M.
    Nawaz, M.
    Hayat, T.
    Alsaedi, A.
    JOURNAL OF AEROSPACE ENGINEERING, 2014, 27 (04)
  • [50] MHD heat and mass transfer flow over a permeable stretching/shrinking sheet with radiation effect
    Yasin, Mohd Hafizi Mat
    Ishak, Anuar
    Pop, Ioan
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 407 : 235 - 240