Lensless X-ray imaging in reflection geometry

被引:62
|
作者
Roy, S. [1 ]
Parks, D. [1 ,2 ]
Seu, K. A. [1 ,2 ]
Su, R. [1 ,2 ]
Turner, J. J. [3 ]
Chao, W. [4 ]
Anderson, E. H. [4 ]
Cabrini, S. [5 ]
Kevan, S. D. [2 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA
[2] Univ Oregon, Dept Phys, Eugene, OR 97403 USA
[3] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
DIFFRACTION MICROSCOPY; HOLOGRAPHY;
D O I
10.1038/NPHOTON.2011.11
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Lensless X-ray imaging techniques such as coherent diffraction imaging(1-8) and ptychography(9-11), and Fourier transform holography(12-17) can provide time-resolved, diffraction-limited images. Nearly all examples of these techniques have focused on transmission geometry, restricting the samples and reciprocal spaces that can be investigated. We report a lensless X-ray technique developed for imaging in Bragg and small-angle scattering geometries, which may also find application in transmission geometries. We demonstrate this by imaging a nanofabricated pseudorandom binary structure in small-angle reflection geometry. The technique can be used with extended objects, places no restriction on sample size, and requires no additional sample masking. The realization of X-ray lensless imaging in reflection geometry opens up the possibility of single-shot imaging of surfaces in thin films, buried interfaces in magnetic multilayers, organic photovoltaic and field-effect transistor devices, or Bragg planes in a single crystal.
引用
收藏
页码:243 / 245
页数:3
相关论文
共 50 条
  • [31] X-ray Reflection
    Fabian, A. C.
    Ross, R. R.
    SPACE SCIENCE REVIEWS, 2010, 157 (1-4) : 167 - 176
  • [32] X-ray Reflection
    A. C. Fabian
    R. R. Ross
    Space Science Reviews, 2010, 157 : 167 - 176
  • [33] X-ray photon correlation spectroscopy in a reflection geometry: coherence and resolution
    Sikharulidze, I
    Dolbnya, IP
    Madsen, A
    de Jeu, WH
    OPTICS COMMUNICATIONS, 2005, 247 (1-3) : 111 - 124
  • [34] Universal simulation of absorption effects for X-ray diffraction in reflection geometry
    Dallmann, Johannes
    Graetz, Jonas
    Hock, Rainer
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2024, 80 : 315 - 328
  • [35] Phase recovery and lensless imaging by iterative methods in optical, X-ray and electron diffraction
    Spence, JCH
    Weierstall, U
    Howells, M
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 360 (1794): : 875 - 895
  • [36] X-ray Reflection Tomography: A New Tool for Surface Imaging
    Innis-Samson, Vallerie Ann
    Mizusawa, Mari
    Sakurai, Kenji
    ANALYTICAL CHEMISTRY, 2011, 83 (20) : 7600 - 7602
  • [37] X-Ray Reflection Imaging of Inclined and Obliquely Illuminated Objects
    Artyukov, I. A.
    Busarov, A. S.
    Popov, N. L.
    Vinogradov, A. V.
    X-RAY LASERS 2016, 2018, 202 : 243 - 250
  • [38] UTILIZATION OF SPECULAR X-RAY REFLECTION, DIFFUSE X-RAY REFLECTION OR PLANAR X-RAY REFLECTION TO STUDY THIN-FILMS OR SURFACES
    CROCE, P
    NEVOT, L
    REVUE DE PHYSIQUE APPLIQUEE, 1976, 11 (01): : 113 - 125
  • [39] X-ray reflection in a sample of X-ray bright ultraluminous X-ray sources
    Caballero-Garcia, M. D.
    Fabian, A. C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 402 (04) : 2559 - 2566
  • [40] Geometry Parameter Estimation for Sparse X-Ray Log Imaging
    Angelina Senchukova
    Jarkko Suuronen
    Jere Heikkinen
    Lassi Roininen
    Journal of Mathematical Imaging and Vision, 2024, 66 : 154 - 166