Totally twisted Khovanov homology

被引:5
|
作者
Roberts, Lawrence P. [1 ]
机构
[1] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
关键词
SPANNING TREE MODEL;
D O I
10.2140/gt.2015.19.1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a variation of Khovanov homology formally similar to totally twisted Heegaard-Floer homology. Over a certain field, this version of Khovanov homology has a completely explicit description in terms of the spanning trees of a link projection. We prove that this new theory is a link invariant and describe some of its properties. Finally, we provide the results of some computer computations of the invariant.
引用
收藏
页码:1 / 59
页数:59
相关论文
共 50 条
  • [21] KHOVANOV HOMOLOGY OF BRAID LINKS
    Nizami, Abdul Rauf
    Munir, Mobeen
    Usman, Ammara
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2016, 57 (02): : 95 - 118
  • [22] A type A structure in Khovanov homology
    Roberts, Lawrence P.
    Algebraic and Geometric Topology, 2016, 16 (06): : 3653 - 3719
  • [23] Instantons and odd Khovanov homology
    Scaduto, Christopher W.
    JOURNAL OF TOPOLOGY, 2015, 8 (03) : 744 - 810
  • [24] PATTERNS IN ODD KHOVANOV HOMOLOGY
    Shumakovitch, Alexander N.
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2011, 20 (01) : 203 - 222
  • [25] UNKNOTTING NUMBER AND KHOVANOV HOMOLOGY
    Alishahi, Akram
    PACIFIC JOURNAL OF MATHEMATICS, 2019, 301 (01) : 15 - 29
  • [26] On a triply graded Khovanov homology
    Putyra, Krzysztof K.
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2016, 25 (03)
  • [27] On Gradings in Khovanov homology and sutured Floer homology
    Grigsby, J. Elisenda
    Wehrli, Stephan M.
    TOPOLOGY AND GEOMETRY IN DIMENSION THREE: TRIANGULATIONS, INVARIANTS, AND GEOMETRIC STRUCTURES, 2011, 560 : 111 - +
  • [28] A generalization of Khovanov's homology
    Aouani, Zouhaier
    Saihi, Ines
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (12) : 1135 - 1140
  • [29] Khovanov homology and the slice genus
    Rasmussen, Jacob
    INVENTIONES MATHEMATICAE, 2010, 182 (02) : 419 - 447
  • [30] KHOVANOV HOMOLOGY DETECTS THE TREFOILS
    Baldwin, John A.
    Sivek, Steven
    DUKE MATHEMATICAL JOURNAL, 2022, 171 (04) : 885 - 956