Computability of Limit Sets for Two-Dimensional Flows

被引:0
|
作者
Graca, Daniel S. [1 ,2 ]
Zhong, Ning [3 ]
机构
[1] Univ Algarve, P-8005139 Faro, Portugal
[2] Inst Telecomunicacoes, Lisbon, Portugal
[3] Univ Cincinnati, DMS, Cincinnati, OH 45221 USA
来源
CONNECTING WITH COMPUTABILITY | 2021年 / 12813卷
关键词
D O I
10.1007/978-3-030-80049-9_48
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A classical theorem of Peixoto qualitatively characterizes, on the two-dimensional unit ball, the limit sets of structurally stable flows defined by ordinary differential equations. Peixoto's density theorem further shows that such flows are typical in the sense that structurally stable systems form an open dense set in the space of all continuously differentiable flows. In this note, we discuss the problem of explicitly finding the limit sets of structurally stable planar flows.
引用
收藏
页码:494 / 503
页数:10
相关论文
共 50 条
  • [31] Fundamental limit for two-dimensional passive devices
    Piestun, Rafael
    de Sterke, C. Martijn
    OPTICS LETTERS, 2009, 34 (06) : 779 - 781
  • [32] Two-Dimensional Magnets beyond the Monolayer Limit
    Tokmachev, Andrey M.
    Averyanov, Dmitry, V
    Taldenkov, Alexander N.
    Sokolov, Ivan S.
    Karateev, Igor A.
    Parfenov, Oleg E.
    Storchak, Vyacheslav G.
    ACS NANO, 2021, 15 (07) : 12034 - 12041
  • [33] Oscillatory exchange coupling in the two-dimensional limit
    Pärnaste, M
    Marcellini, M
    Hjörvarsson, B
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (44) : L477 - L483
  • [34] Properties of two-dimensional sets with small sumset
    Grynkiewicz, David
    Serra, Oriol
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (02) : 164 - 188
  • [35] The Dirichlet problem on two-dimensional stratified sets
    Kovaleva, L. A.
    Soldatov, A. P.
    IZVESTIYA MATHEMATICS, 2015, 79 (01) : 74 - 108
  • [36] Focal sets in two-dimensional space forms
    Arturo Escudero, Carlos
    Reventos, Agusti
    Solanes, Gil
    PACIFIC JOURNAL OF MATHEMATICS, 2007, 233 (02) : 309 - 320
  • [37] ALIGNMENTS IN TWO-DIMENSIONAL RANDOM SETS OF POINTS
    KENDALL, DG
    KENDALL, WS
    ADVANCES IN APPLIED PROBABILITY, 1980, 12 (02) : 380 - 424
  • [38] Involuntary automorphisms of two-dimensional convex sets
    Maürer, H
    MONATSHEFTE FUR MATHEMATIK, 1999, 128 (01): : 7 - 21
  • [39] Limit cycles in the two-dimensional may problem
    Gyllenberg, M
    Osipov, AV
    DIFFERENTIAL EQUATIONS, 1999, 35 (06) : 733 - 738
  • [40] TWO-DIMENSIONAL MAGNETOTRANSPORT IN THE EXTREME QUANTUM LIMIT
    TSUI, DC
    STORMER, HL
    GOSSARD, AC
    PHYSICAL REVIEW LETTERS, 1982, 48 (22) : 1559 - 1562