Partition and Density-based Clustering for Moving Objects trajectories

被引:0
|
作者
Liu Jinpeng [1 ]
Zhang Yanling [1 ]
Liu Gang
机构
[1] Henan Univ, Inst Data & Knowledge Engn, Kaifeng 475001, Henan Province, Peoples R China
来源
ICCSE 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION: ADVANCED COMPUTER TECHNOLOGY, NEW EDUCATION | 2008年
关键词
trajectory clustering; partition; OPTICS; spatio-temporal space;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Since the trajectory of a moving object contains a lot of information, it is an interesting task to analyze trajectories for several application areas. Clustering common sub-trajectories is one of them. We propose a method T-CLUS to partition a trajectory into tine segments, and then generate the augmented cluster-ordering of the line segments; finally identify cluster structure by means of reachability plot. Experimental results demonstrate that T-CLUS is scalable and accurate to discover common sub-trajectories from a trajectory database.
引用
收藏
页码:182 / 187
页数:6
相关论文
共 50 条
  • [41] Density-based clustering of social networks
    Menardi, Giovanna
    De Stefano, Domenico
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2022, 185 (03) : 1004 - 1029
  • [42] Scalable density-based distributed clustering
    Januzaj, E
    Kriegel, HP
    Pfeifle, M
    KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2004, PROCEEDINGS, 2004, 3202 : 231 - 244
  • [43] Detecting spatiotemporal extents of traffic congestion: a density-based moving object clustering approach
    Shi, Yan
    Wang, Da
    Tang, Jianbo
    Deng, Min
    Liu, Huimin
    Liu, Baoju
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2021, 35 (07) : 1449 - 1473
  • [44] A Density-Based Algorithm for Detecting Anomalous Trajectories
    Barnwal, Rajesh P.
    Baride, S.
    Majumder, S.
    Ghosh, Soumya K.
    2016 INTERNATIONAL CONFERENCE ON MICROELECTRONICS, COMPUTING AND COMMUNICATIONS (MICROCOM), 2016,
  • [45] DBHD: Density-based clustering for highly varying density
    Durani, Walid
    Mautz, Dominik
    Plant, Claudia
    Boehm, Christian
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 921 - 926
  • [46] Fast density estimation for density-based clustering methods
    Cheng, Difei
    Xu, Ruihang
    Zhang, Bo
    Jin, Ruinan
    NEUROCOMPUTING, 2023, 532 : 170 - 182
  • [47] Density-based unsupervised classification for spherical objects
    Deng, SR
    Qian, K
    Hung, CC
    APPLICATIONS AND SCIENCE OF NEURAL NETWORKS, FUZZY SYSTEMS, AND EVOLUTIONARY COMPUTATION VI, 2003, 5200 : 240 - 247
  • [48] Improving performance of decision threshold moving-based strategies by integrating density-based clustering technique
    Lu, Mengke
    Gao, Shang
    Yang, Xibei
    Yu, Hualong
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (05): : 2501 - 2518
  • [49] A novel approach for density-based optimal semantic clustering of web objects via identification of kingpins
    Setia S.
    Verma J.
    Duhan N.
    Recent Advances in Computer Science and Communications, 2021, 14 (03) : 710 - 723
  • [50] Incremental Density-Based Clustering on Multicore Processors
    Mai, Son T.
    Jacobsen, Jon
    Amer-Yahia, Sihem
    Spence, Ivor
    Nhat-Phuong Tran
    Assent, Ira
    Quoc Viet Hung Nguyen
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (03) : 1338 - 1356