DeepGx: Deep Learning Using Gene Expression for Cancer Classification

被引:44
|
作者
de Guia, Joseph M. [1 ,2 ]
Devaraj, Madhavi [1 ]
Leung, Carson K. [2 ]
机构
[1] Mapua Univ, Sch Informat Technol, Manila, Philippines
[2] Univ Manitoba, Dept Comp Sci, Winnipeg, MB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
deep learning; machine learning; neural network; convolutional neural network (CNN); gene expression; ribonucleic acid sequencing (RNA-seq); bioinformatics;
D O I
10.1145/3341161.3343516
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper aims to explore the problems associated in solving the classification of cancer in gene expression data using deep learning model. Our proposed solution for the cancer classification of ribonucleic acid sequencing (RNA-seq) extracted from the Pan-Cancer Atlas is to transform the 1-dimensional (1D) gene expression values into 2-dimensional (2D) images. This solution of embedding the gene expression values into a 2D image considers the overall features of the genes and computes features that are needed in the classification task of the deep learning model by using the convolutional neural network (CNN). When training and testing the 33 cohorts of cancer types in the convolutional neural network, our classification model led to an accuracy of 95.65%. This result is reasonably good when compared with existing works that use multiclass label classification. We also examine the genes based on their significance related to cancer types through the heat map and associate them with biomarkers. Our CNN for the classification task fosters the deep learning framework in the cancer genome analysis and leads to better understanding of complex features in cancer disease.
引用
收藏
页码:913 / 920
页数:8
相关论文
共 50 条
  • [41] RETRACTED: Performance Analysis of Deep Learning Models for Binary Classification of Cancer Gene Expression Data (Retracted Article)
    Majumder, Subhasree
    Yogita
    Pal, Vipin
    Yadav, Anju
    Chakrabarty, Amitabha
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [42] Classification of Lung and Colon Cancer Using Deep Learning Method
    Provath, Md Al-Mamun
    Deb, Kaushik
    Jo, Kang-Hyun
    FRONTIERS OF COMPUTER VISION, IW-FCV 2023, 2023, 1857 : 56 - 70
  • [43] Breast Cancer Histology Image Classification using Deep Learning
    Canh Phong Nguyen
    Anh Hoang Vo
    Bao Thien Nguyen
    ISCIT 2019: PROCEEDINGS OF 2019 19TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES (ISCIT), 2019, : 366 - 370
  • [44] An approach for cancer classification using optimization driven deep learning
    Devendran, Menaga
    Sathya, Revathi
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2021, 31 (04) : 1936 - 1953
  • [45] MULTICLASS CLASSIFICATION OF HISTOLOGY ON COLORECTAL CANCER USING DEEP LEARNING
    Izzaty, Al Mira Khonsa
    Cenggoro, Tjeng Wawan
    Elwirehardja, Gregorius Natanael
    Pardamean, Bens
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2022,
  • [46] Breast Cancer Classification Using Deep Learning and FPGA Inferencing
    Wong, E-Hong
    Zakaria, Fazrul Faiz
    Mustapa, Muslim
    Warip, Mohd Nazri Mohd
    Ehkan, Phaklen
    INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, ICOBE 2021, 2023, 2562
  • [47] Classification of Skin Cancer Lesions Using Explainable Deep Learning
    Rehman, Muhammad Zia Ur
    Ahmed, Fawad
    Alsuhibany, Suliman A.
    Jamal, Sajjad Shaukat
    Ali, Muhammad Zulfiqar
    Ahmad, Jawad
    SENSORS, 2022, 22 (18)
  • [48] Breast Cancer Dataset, Classification and Detection Using Deep Learning
    Iqbal, Muhammad Shahid
    Ahmad, Waqas
    Alizadehsani, Roohallah
    Hussain, Sadiq
    Rehman, Rizwan
    HEALTHCARE, 2022, 10 (12)
  • [49] Tumor Classification Using Gene Expression and Machine Learning Models
    Tuncal, Kubra
    Ozkan, Cagri
    10TH INTERNATIONAL CONFERENCE ON THEORY AND APPLICATION OF SOFT COMPUTING, COMPUTING WITH WORDS AND PERCEPTIONS - ICSCCW-2019, 2020, 1095 : 662 - 667
  • [50] Deep Learning Enabled Microarray Gene Expression Classification for Data Science Applications
    Malibari, Areej A.
    Alshehri, Reem M.
    Al-Wesabi, Fahd N.
    Negm, Noha
    Al Duhayyim, Mesfer
    Hilal, Anwer Mustafa
    Yaseen, Ishfaq
    Motwakel, Abdelwahed
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 4277 - 4290