DeepGx: Deep Learning Using Gene Expression for Cancer Classification

被引:44
|
作者
de Guia, Joseph M. [1 ,2 ]
Devaraj, Madhavi [1 ]
Leung, Carson K. [2 ]
机构
[1] Mapua Univ, Sch Informat Technol, Manila, Philippines
[2] Univ Manitoba, Dept Comp Sci, Winnipeg, MB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
deep learning; machine learning; neural network; convolutional neural network (CNN); gene expression; ribonucleic acid sequencing (RNA-seq); bioinformatics;
D O I
10.1145/3341161.3343516
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper aims to explore the problems associated in solving the classification of cancer in gene expression data using deep learning model. Our proposed solution for the cancer classification of ribonucleic acid sequencing (RNA-seq) extracted from the Pan-Cancer Atlas is to transform the 1-dimensional (1D) gene expression values into 2-dimensional (2D) images. This solution of embedding the gene expression values into a 2D image considers the overall features of the genes and computes features that are needed in the classification task of the deep learning model by using the convolutional neural network (CNN). When training and testing the 33 cohorts of cancer types in the convolutional neural network, our classification model led to an accuracy of 95.65%. This result is reasonably good when compared with existing works that use multiclass label classification. We also examine the genes based on their significance related to cancer types through the heat map and associate them with biomarkers. Our CNN for the classification task fosters the deep learning framework in the cancer genome analysis and leads to better understanding of complex features in cancer disease.
引用
收藏
页码:913 / 920
页数:8
相关论文
共 50 条
  • [1] Deep learning techniques for cancer classification using microarray gene expression data
    Gupta, Surbhi
    Gupta, Manoj K.
    Shabaz, Mohammad
    Sharma, Ashutosh
    FRONTIERS IN PHYSIOLOGY, 2022, 13
  • [2] Cancer Classification Based on Microarray Gene Expression Data Using Deep Learning
    Guillen, Pablo
    Ebalunode, Jerry
    2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE & COMPUTATIONAL INTELLIGENCE (CSCI), 2016, : 1403 - 1405
  • [3] Lung cancer classification based on enhanced deep learning using gene expression data
    Yuvaraj V.
    Maheswari D.
    Measurement: Sensors, 2023, 30
  • [4] Optimized gene selection and classification of cancer from microarray gene expression data using deep learning
    Shah, Shamveel Hussain
    Iqbal, Muhammad Javed
    Ahmad, Iftikhar
    Khan, Suleman
    Rodrigues, Joel J. P. C.
    NEURAL COMPUTING & APPLICATIONS, 2020,
  • [5] Deep-Learning-Based Cancer Profiles Classification Using Gene Expression Data Profile
    Almarzouki, Hatim Z.
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [6] Deep-Learning-Based Cancer Profiles Classification Using Gene Expression Data Profile
    Almarzouki, Hatim Z.
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [7] Deep learning approach for cancer subtype classification using high-dimensional gene expression data
    Jiquan Shen
    Jiawei Shi
    Junwei Luo
    Haixia Zhai
    Xiaoyan Liu
    Zhengjiang Wu
    Chaokun Yan
    Huimin Luo
    BMC Bioinformatics, 23
  • [8] Analyzing RNA-Seq Gene Expression Data Using Deep Learning Approaches for Cancer Classification
    Rukhsar, Laiqa
    Bangyal, Waqas Haider
    Ali Khan, Muhammad Sadiq
    Ag Ibrahim, Ag Asri
    Nisar, Kashif
    Rawat, Danda B.
    APPLIED SCIENCES-BASEL, 2022, 12 (04):
  • [9] Deep learning approach for cancer subtype classification using high-dimensional gene expression data
    Shen, Jiquan
    Shi, Jiawei
    Luo, Junwei
    Zhai, Haixia
    Liu, Xiaoyan
    Wu, Zhengjiang
    Yan, Chaokun
    Luo, Huimin
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [10] Deep Learning Based Tumor Type Classification Using Gene Expression Data
    Lyu, Boyu
    Haque, Anamul
    ACM-BCB'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2018, : 89 - 96