Deformation behavior and microstructure of Ti6Al4V manufactured by SLM

被引:112
|
作者
Krakhmalev, P. [1 ]
Fredriksson, G. [1 ]
Yadroitsava, I. [2 ]
Kazantseva, N. [3 ]
du Plessis, A. [4 ]
Yadroitsev, I. [2 ]
机构
[1] Karlstad Univ, Dept Engn & Phys, SE-65188 Karlstad, Sweden
[2] Cent Univ Technol, Dept Mech & Mechatron Engn, Private Bag X20539, ZA-9300 Bloemfontein, South Africa
[3] Urals Branch Acad Sci, Inst Met Phys, Ekaterinburg 620219, Russia
[4] Univ Stellenbosch, CT Scanner Facil, Private Bag 11, ZA-7602 Stellenbosch, South Africa
关键词
Ti6Al4V; tensile test; mechanical properties; porosity; microstructure; twinning; X-RAY TOMOGRAPHY; MECHANICAL-PROPERTIES; TITANIUM-ALLOYS; TI-6AL-4V; DUCTILITY; POROSITY; IMPROVEMENT;
D O I
10.1016/j.phpro.2016.08.080
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Mechanical properties, porosity, and microstructure of Ti6Al4V (ELI) material produced by Selective Laser Melting (SLM) under controlled oxygen content were analyzed. Fully martensitic alpha structure with high dislocation density and stacking faults was observed in both as-built and stress relieved samples by means of XRD and TEM. Tensile {101 (2) over bar} twinning was identified by TEM and electron diffraction. Accommodation of thermal stresses during manufacturing was suggested as a possible reason for twinning. Computed tomography of pores was carried out. Pores in the specimens were evenly distributed and mostly had an elongated shape. Defect analysis by micro CT scans in pre-strained samples confirmed that the pore coalescence was the main crack formation mechanism in the final fracture with typical cup-and-cone fracture morphology. Additionally, typical dimples and quasi-cleavage were revealed. Mechanical properties of the samples after stress relieving heat treatment at 650 degrees C for 3 h are complied with the international standard for Ti alloys for biomedical applications. (C) 2016 The Authors. Published by Elsevier B.V.
引用
收藏
页码:778 / 788
页数:11
相关论文
共 50 条
  • [21] Study on Corrosion Resistance and Bio-Tribological Behavior of Porous Structure Based on the SLM Manufactured Medical Ti6Al4V
    Lu, Peipei
    Wu, Meiping
    Liu, Xin
    Duan, Weipeng
    Han, Jitai
    METALS AND MATERIALS INTERNATIONAL, 2020, 26 (08) : 1182 - 1191
  • [22] Study on Corrosion Resistance and Bio-Tribological Behavior of Porous Structure Based on the SLM Manufactured Medical Ti6Al4V
    Peipei Lu
    Meiping Wu
    Xin Liu
    Weipeng Duan
    Jitai Han
    Metals and Materials International, 2020, 26 : 1182 - 1191
  • [23] Microstructure characterization and tribological behavior of anodized ti6al4v alloy
    Cely, M. M.
    Toro, Alejandro
    Estupinan, Hugo
    Yesid Pena, Dario
    INGENIERIA Y COMPETITIVIDAD, 2014, 16 (01): : 281 - 290
  • [24] Measurement and analysis of tool wear and surface characteristics in micro turning of SLM Ti6Al4V and wrought Ti6Al4V
    Airao, Jay
    Kishore, Hreetabh
    Nirala, Chandrakant K.
    MEASUREMENT, 2023, 206
  • [25] Effect of processing parameters on microhardness and microstructure of additive manufactured titanium alloy (Ti6Al4V) via selective laser melting (SLM)
    Foudzi, Farhana Mohd
    Jamhari, Fathin Iliana
    Buhairi, Minhalina Ahmad
    PROCEEDINGS OF MECHANICAL ENGINEERING RESEARCH DAY 2020 (MERD'20), 2020, : 58 - 60
  • [26] Microstructure and Electrochemical Behavior of Contemporary Ti6Al4V Implant Alloys
    Neto M.Q.
    Radice S.
    Hall D.J.
    Frisch N.B.
    Mathew M.T.
    Fischer A.
    Jacobs J.J.
    Pourzal R.
    Journal of Bio- and Tribo-Corrosion, 2022, 8 (1)
  • [27] Automated image mapping and quantification of microstructure heterogeneity in additive manufactured Ti6Al4V
    Zhao, Hao
    Ho, Alistair
    Davis, Alec
    Antonysamy, Alphons
    Prangnell, Philip
    MATERIALS CHARACTERIZATION, 2019, 147 : 131 - 145
  • [28] Process Optimization and Microstructure Characterization of Ti6Al4V Manufactured by Selective Laser Melting
    Li Junfeng
    Wei Zhengying
    2017 4TH INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS, MECHANICS AND STRUCTURAL ENGINEERING (4TH AMMSE 2017), 2017, 269
  • [29] Microstructure and Corrosion Resistance of Ti6Al4V Manufactured by Laser Powder Bed Fusion
    Luo, Yiwa
    Wang, Mingyong
    Zhu, Jun
    Tu, Jiguo
    Jiao, Shuqiang
    METALS, 2023, 13 (03)
  • [30] Surface characteristics comparison between additively manufactured Ti6Al4V and wrought Ti6Al4V turned samples
    Saffioti, Maria Rosaria
    Rotella, Giovanna
    Del Prete, Antonio
    MATERIAL FORMING, ESAFORM 2024, 2024, 41 : 2050 - 2056