Probing transconductance spatial variations in graphene nanoribbon field-effect transistors using scanning gate microscopy

被引:20
|
作者
Soudi, A. [1 ]
Aivazian, G. [2 ]
Shi, S. -F. [3 ]
Xu, X. D. [2 ]
Gu, Y. [1 ]
机构
[1] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA
[2] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[3] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
关键词
D O I
10.1063/1.3678034
中图分类号
O59 [应用物理学];
学科分类号
摘要
We have used scanning gate microscopy to probe local transconductance in graphene nanoribbon (GNR) field-effect transistors (FETs) fabricated from chemical vapor deposition-grown graphene. Particularly, nanometer-scale (<= 100 nm, resolution limited) areas characterized by significant transconductance spatial variations were observed along the FET channel. These were attributed to the impurities at or close to the edges of the GNRs. Our results further show that a single such impurity site in a long-channel (similar to 2 mu m) GNR FET can essentially control the global device characteristics. This finding demonstrates the importance of controlling the spatial inhomogeneity of electronic properties in graphene and related nanostructures in order to realize their envisioned applications in new electronics. (C) 2012 American Institute of Physics. [doi:10.1063/1.3678034]
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Graphene nanoribbon field-effect transistors on wafer-scale epitaxial graphene on SiC substrates
    Hwang, Wan Sik
    Zhao, Pei
    Tahy, Kristof
    Nyakiti, Luke O.
    Wheeler, Virginia D.
    Myers-Ward, Rachael L.
    Eddy, Charles R., Jr.
    Gaskill, D. Kurt
    Robinson, Joshua A.
    Haensch, Wilfried
    Xing, Huili
    Seabaugh, Alan
    Jena, Debdeep
    APL MATERIALS, 2015, 3 (01):
  • [42] Performance Comparisons of Bilayer Graphene and Graphene Nanoribbon Field-Effect Transistors under Ballistic Transport
    Hosokawa, Hiroshi
    Sako, Ryutaro
    Ando, Haruki
    Tsuchiya, Hideaki
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (11)
  • [43] Graphene nanoribbon tunneling field effect transistors
    Mohamadpour, Hakimeh
    Asgari, Asghar
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2012, 46 : 270 - 273
  • [44] Graphene field-effect transistors
    Reddy, Dharmendar
    Register, Leonard F.
    Carpenter, Gary D.
    Banerjee, Sanjay K.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (31)
  • [45] Dynamic Gate Control of Aryldiazonium Chemistry on Graphene Field-Effect Transistors
    Bazan, Claudia M.
    Beraud, Anouk
    Nguyen, Minh
    Bencherif, Amira
    Martel, Richard
    Bouilly, Delphine
    NANO LETTERS, 2022, 22 (07) : 2635 - 2642
  • [46] Graphene field-effect transistors based on boron nitride gate dielectrics
    Meric, Inanc
    Dean, Cory
    Young, Andrea
    Hone, Jim
    Kim, Philip
    Shepard, Kenneth L.
    2010 INTERNATIONAL ELECTRON DEVICES MEETING - TECHNICAL DIGEST, 2010,
  • [47] MECHANISM OF NEGATIVE TRANSCONDUCTANCE IN HETEROSTRUCTURE FIELD-EFFECT TRANSISTORS
    BAEK, J
    SHUR, M
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1990, 37 (08) : 1917 - 1921
  • [48] Compression in transconductance at low gate voltages in submicron GaAs metal semiconductor field-effect transistors
    Ahmed, MM
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1997, 15 (06): : 2052 - 2056
  • [49] Modeling the effect of the transconductance increase in GaAs field-effect transistors
    Gergel', VA
    Mokerov, VG
    Zelenyi, AP
    Timofeev, MV
    DOKLADY PHYSICS, 2002, 47 (10) : 715 - 716
  • [50] Modeling the effect of the transconductance increase in GaAs field-effect transistors
    V. A. Gergel’
    V. G. Mokerov
    A. P. Zelenyi
    M. V. Timofeev
    Doklady Physics, 2002, 47 : 715 - 716