Fast data association using multidimensional assignment with clustering

被引:49
|
作者
Chummun, MR [1 ]
Kirubarajan, T [1 ]
Pattipati, KR [1 ]
Bar-Shalom, Y [1 ]
机构
[1] Univ Connecticut, Dept Elect & Syst Engn, Storrs, CT 06269 USA
关键词
D O I
10.1109/7.953245
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
We present a fast data association technique based on clustering and multidimensional assignment algorithms for multisensor-multitarget tracking. Assignment-based methods have been shown to be very effective for data association. Multidimensional assignment for data association is an NP-hard problem and various near-optimal modifications with (pseudo-)polynomial complexity have been proposed. In multidimensional assignment, candidate assignment tree building consumes about 95% of the time. We present the development of a fast data association algorithm, which partitions the problem into smaller sub-problems. A clustering approach, which attempts to group measurements before forming the candidate tree, is developed for various target-sensor configurations. Simulation results show significant computational savings over the standard multidimensional assignment approach without clustering.
引用
收藏
页码:898 / 913
页数:16
相关论文
共 50 条
  • [31] Fast multidimensional scaling on big geospatial data using neural networks
    Mademlis, Ioannis
    Voulgaris, Georgios
    Pitas, Ioannis
    EARTH SCIENCE INFORMATICS, 2023, 16 (3) : 2241 - 2249
  • [32] Fast multidimensional scaling on big geospatial data using neural networks
    Ioannis Mademlis
    Georgios Voulgaris
    Ioannis Pitas
    Earth Science Informatics, 2023, 16 : 2241 - 2249
  • [33] Data-Oriented Maintenance of Clinical Pathway using Clustering and Multidimensional Scaling
    Tsumoto, Shusaku
    Hirano, Shoji
    Iwata, Haruko
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 2596 - 2600
  • [34] Visualization, clustering and classification of multidimensional astronomical data
    Staiano, A
    Ciaramella, A
    De Vinco, L
    Donalek, C
    Longo, G
    Raiconi, G
    Tagliaferri, R
    Amato, R
    Del Mondo, C
    Mangano, G
    Miele, G
    CAMP 2005: SEVENTH INTERNATIONAL WORKSHOP ON COMPUTER ARCHITECTURE FOR MACHINE PERCEPTION , PROCEEDINGS, 2005, : 141 - 146
  • [35] Simultaneous Registration and Clustering for Multidimensional Functional Data
    Zeng, Pengcheng
    Shi, Jian Qing
    Kim, Won-Seok
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2019, 28 (04) : 943 - 953
  • [36] Multidimensional visualization and clustering of historical process data
    Thornhill, Nina F.
    Melbo, Hallgeir
    Wiik, Jan
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (17) : 5971 - 5985
  • [37] Multi-assignment clustering for Boolean data
    UC Berkeley, Computer Science Division, 721 Soda Hall, Berkeley, CA 94720, United States
    不详
    不详
    J. Mach. Learn. Res., (459-489):
  • [38] Reliable Distributed Clustering with Redundant Data Assignment
    Gandikota, Venkata
    Mazumdar, Arya
    Rawat, Ankit Singh
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 2556 - 2561
  • [39] Multi-Assignment Clustering for Boolean Data
    Frank, Mario
    Streich, Andreas P.
    Basin, David
    Buhmann, Joachim M.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 459 - 489
  • [40] Using association patterns for discrete-valed data clustering
    Wong, Andrew K. C.
    Li, Gary C. L.
    PROCEEDINGS OF THE IASTED INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND APPLICATIONS, 2007, : 410 - +