Simulation of anisotropic wet-chemical etching using a physical model

被引:4
|
作者
van Suchtelen, J [1 ]
Sato, K [1 ]
van Veenendaal, E [1 ]
Nijdam, AJ [1 ]
Gardeniers, JGE [1 ]
van Enckevort, WJP [1 ]
Elwenspoek, M [1 ]
机构
[1] Univ Twente, Res Inst Micromech Transducers, MESA, NL-7500 AE Enschede, Netherlands
关键词
D O I
10.1109/MEMSYS.1999.746850
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a method to describe the orientation dependence of the etch rate of silicon, or any other single crystalline material, in anisotropic etching solutions by analytical functions. The parameters in these functions have a simple physical meaning. Crystals have a small number of atomically smooth faces, which etch (and grow) slowly as a consequence of the removal (or addition) of atoms by rows and layers. However, smooth faces have a roughening transition (well known in statistical physics) [1]; at increasing temperature they become rougher, and accordingly the etch and growth rates increase. Consequently, the basic physical parameters of our functions are the roughness of the smooth faces and the velocity of steps on these faces. This small set of parameters describes the etch rate in the two-dimensional space of orientations (on the unit sphere). We have applied our method to the practical case of etch rate functions for silicon crystals in KOH solutions. The maximum deviation between experimental data and simulation using only nine physically meaningful parameters is less than 5% of the maximum etch rate. This method, which in this study is used to describe anisotropic etching of silicon, can easily be adjusted to describe the growth or etching process of any crystal.
引用
收藏
页码:332 / 337
页数:6
相关论文
共 50 条
  • [41] Study of Anisotropic Wet Chemical Etching for Silicon Microneedles Fabrication
    Lyubarskaya, Anna, V
    Chaplygin, Yury A.
    Golishnikov, Alexander A.
    Pankratov, Oleg, V
    PROCEEDINGS OF THE 2021 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (ELCONRUS), 2021, : 2579 - 2582
  • [42] Wet-Chemical Formation of Aluminophosphates
    P.E. de Jongh
    P.J.A. van Tilborg
    H.J. Wondergem
    Journal of Sol-Gel Science and Technology, 2004, 31 : 241 - 244
  • [43] Turnkey wet-chemical plant
    Galvanotechnik, 2021, 112 (10): : 1352 - 1354
  • [44] Wet-Chemical Etching: a Novel Nanofabrication Route to Prepare Broadband Random Plasmonic Metasurfaces
    Kumar, Piragash R. M.
    Venkatesh, A.
    Moorthy, V. H. S.
    PLASMONICS, 2019, 14 (02) : 365 - 374
  • [45] Wet-chemical etching of (11(2)over-bar0) ZnO films
    Zhu, J
    Emanetoglu, NW
    Chen, Y
    Yakshinskiy, BV
    Lu, Y
    JOURNAL OF ELECTRONIC MATERIALS, 2004, 33 (06) : 556 - 559
  • [46] Etching of tungsten via a combination of thermal oxide formation and wet-chemical oxide dissolution
    Pacco, Antoine
    Nakano, Teppei
    Prado, Jana Loyo
    Lai, Ju-Geng
    Kawarazaki, Hikaru
    Sanchez, Efrain Altamirano
    MICROELECTRONIC ENGINEERING, 2024, 297
  • [47] Wet-Chemical Etching: a Novel Nanofabrication Route to Prepare Broadband Random Plasmonic Metasurfaces
    Piragash Kumar R. M.
    Venkatesh A.
    Moorthy V. H. S.
    Plasmonics, 2019, 14 : 365 - 374
  • [48] Controlled Formation of ZnO Fine-pattern Transparent Electrodes by Wet-Chemical Etching
    Yamamoto, Naoki
    Makino, Hisao
    Sato, Yasushi
    Yamamoto, Tetsuya
    PROCESSES AT THE SEMICONDUCTOR-SOLUTION INTERFACE 4, 2011, 35 (08): : 165 - 172
  • [49] Monte Carlo simulation of wet chemical etching of silicon
    van Veenendaal, E
    van Suchtelen, J
    van Beurden, P
    Cuppen, HM
    van Enckevort, WJP
    Nijdam, AJ
    Elwenspoek, M
    Vlieg, E
    SENSORS AND MATERIALS, 2001, 13 (06) : 343 - 350
  • [50] Wet-chemical passivation of anisotropic plasmonic nanoparticles for LSPR-sensing by a silica shell
    Thiele, Matthias
    Goetz, Isabell
    Trautmann, Steffen
    Mueller, Robert
    Csaki, Andrea
    Henkel, Thomas
    Fritzsche, Wolfgang
    MATERIALS TODAY-PROCEEDINGS, 2015, 2 (01) : 33 - 40