Novel magnetic MnO2/MnFe2O4 nanocomposite as a heterogeneous catalyst for activation of peroxymonosulfate (PMS) toward oxidation of organic pollutants

被引:162
|
作者
Chen, Gong [1 ,2 ]
Zhang, Xinyi [1 ,2 ]
Gao, Yingjie [1 ,2 ]
Zhu, Guixian [1 ,2 ]
Cheng, Qingfeng [3 ]
Cheng, Xiuwen [1 ,2 ,3 ]
机构
[1] Lanzhou Univ, Key Lab Western Chinas Environm Syst, Minist Educ, Lanzhou 730000, Gansu, Peoples R China
[2] Lanzhou Univ, Key Lab Environm Pollut Predict & Control, Coll Earth & Environm Sci, Lanzhou 730000, Gansu, Peoples R China
[3] Chengdu Univ Informat Technol, Coll Resources & Environm, Chengdu 610225, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
PMS; MnO2/MnFe2O4; Magnetism; SO4 center dot-; Mechanism; VISIBLE-LIGHT; PHOTOELECTRO-FENTON; PHENOL DEGRADATION; ELECTRO-FENTON; PERFORMANCE; DYES; DECOLORIZATION; MINERALIZATION; DECOMPOSITION; NANOPARTICLES;
D O I
10.1016/j.seppur.2018.12.049
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Novel magnetic MnO2/MnFe2O4 nanocomposite was successfully fabricated by hydrothermal method. Subsequently, this nanocomposite was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microcopy (TEM), X-ray photoelectron spectra (XPS), vibrating sample magnetometer (VSM) and Brunauer-Emmett-Teller (BET) measurements. Then the material was applied to activate PMS for Rhodamine B (Rh B) degradation. The results displayed that the decomposition efficiency of the MnO2/MnFe2O4 nanocomposite with a mole ratio of 7:1 was 90% for Rh B within 5 min in the presence of PMS, higher than other MnO2/MnFe2O4 ratio, homogeneous catalysts (Fe3+ and Mn2+), pure MnO2 and pure MnFe2O4. In addition, influences of pivotal factors (PMS concentration, catalyst dosage and initial pH value), performance of different processes and reusability of MnO2/MnFe2O4 nanocomposite were also evaluated. Radical scavenging experiments were conducted and SO4 center dot- was indicated as the primary radical. What's more, the MnO2/MnFe2O4 nanocomposite could be convenient to recycle in practical application benefited from its magnetism. Finally, according to the results and previous studies, the believable mechanism of activating PMS by MnO2/MnFe2O4 nanocomposite was put forward, which could occupy an important position as a fast treatment option in sewage disposal.
引用
收藏
页码:456 / 464
页数:9
相关论文
共 50 条
  • [21] Magnetic CoFe2O4 nanoparticles supported on titanate nanotubes (CoFe2O4/TNTs) as a novel heterogeneous catalyst for peroxymonosulfate activation and degradation of organic pollutants
    Du, Yunchen
    Ma, Wenjie
    Liu, Pingxin
    Zou, Bohua
    Ma, Jun
    JOURNAL OF HAZARDOUS MATERIALS, 2016, 308 : 58 - 66
  • [22] Efficient degradation of Enrofloxacin with novel magnetic MnFe2O4/NiS2 composite as an activator of peroxymonosulfate
    Feng, Dan
    Li, Xiangchen
    Cao, Shihu
    Zheng, Shugang
    Yin, Yaqi
    Song, Chunjin
    Gao, Yawen
    Bate, Nasen
    Shang, Jiangwei
    Cheng, Xiuwen
    Chemical Engineering Journal, 2024, 500
  • [23] Heterogeneous degradation of Orange II with peroxymonosulfate activated by ordered mesoporous MnFe2O4
    Deng, Jing
    Feng, ShanFang
    Ma, Xiaoyan
    Tan, Chaoqun
    Wang, Hongyu
    Zhou, Shiqing
    Zhang, Tuqiao
    Li, Jun
    SEPARATION AND PURIFICATION TECHNOLOGY, 2016, 167 : 181 - 189
  • [24] MnFe2O4/zeolite composite catalyst for activating peroxymonosulfate to efficiently degrade antibiotic
    Wang, Lei
    Li, Jianjun
    Du, Ziang
    Jin, Mingyan
    Yao, Jun
    Zhang, Zhanqun
    MATERIALS LETTERS, 2023, 344
  • [25] Highly-efficient degradation of triclosan attributed to peroxymonosulfate activation by heterogeneous catalyst g-C3N4/MnFe2O4
    Wang, Jing
    Yue, Min
    Han, Yuze
    Xu, Xing
    Yue, Qinyan
    Xu, Shiping
    CHEMICAL ENGINEERING JOURNAL, 2020, 391
  • [26] Simultaneous oxidation and removal of Sb(III) from water by using synthesized CTAB/MnFe2O4/MnO2 composite
    Yao, Shuhua
    Zhu, Xiaolin
    Wang, Ying
    Zhang, Danni
    Wang, Shaofeng
    Jia, Yongfeng
    CHEMOSPHERE, 2020, 245
  • [27] Ultrasound-assisted heterogeneous process for organic dye pollutants destruction using the novel MIL-101(Fe)/ZrO2/MnFe2O4 nanocomposite catalyst from water medium
    Sadeghi, Meysam
    Zarshenas, Pourya
    JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE AND ENGINEERING, 2024, : 483 - 501
  • [28] Degradation of ciprofloxacin by magnetic CuS/MnFe2O4 catalysts efficiently activated peroxymonosulfate
    Feng, Li
    Liu, Yanyan
    Shan, Yuxue
    Yang, Shuao
    Wu, Lanting
    Shi, Tianyu
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2024, 161
  • [29] Facile Synthesis of Hierarchically Structured Magnetic MnO2/ZnFe2O4 Hybrid Materials and Their Performance in Heterogeneous Activation of Peroxymonosulfate
    Wang, Yuxian
    Sun, Hongqi
    Ang, Ha Ming
    Tade, Moses O.
    Wang, Shaobin
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (22) : 19914 - 19923
  • [30] Effect of ZnO on Structural and Magnetic Properties of MnFe2O4/ZnO Nanocomposite
    Aslibeiki, B.
    Kameli, P.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2015, 28 (11) : 3343 - 3350