A High-Availability K-modes Clustering Method Based on Differential Privacy

被引:1
|
作者
Zhang, Shaobo [1 ,2 ,3 ]
Yuan, Liujie [1 ,2 ]
Li, Yuxing [1 ,2 ]
Chen, Wenli [1 ,2 ]
Ding, Yifei [1 ,2 ]
机构
[1] Hunan Univ Sci & Technol, Sch Comp Sci & Engn, Xiangtan 411201, Peoples R China
[2] Hunan Key Lab Serv Comp & New Software Serv Techn, Xiangtan 411201, Peoples R China
[3] Natl Univ Def Technol, Coll Comp, Key Lab Software Engn Complex Syst, Changsha 410073, Peoples R China
关键词
Privacy protection; Categorical data mining; Differential privacy; K-modes clustering; ALGORITHM;
D O I
10.1007/978-3-030-95388-1_18
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In categorical data mining, the K-modes algorithm is a classic algorithm that has been widely used. However, the data analyzed by the K-modes algorithm usually contains sensitive user information. If these data are leaked, it will seriously threaten the privacy of users. In response to this problem, the existing method that combines differential privacy with the K-modes algorithm can effectively prevent privacy leakage. Nevertheless, differential privacy adds noise to the data while protecting data privacy, which will reduce the availability of clustering results. In this paper, we propose a high-availability K-modes clustering mechanism based on differential privacy(HAKC). In this mechanism, based on the use of differential privacy to protect data privacy, we select the initial centroid of the clustering by calculation, and improve the calculation method of the distance between the data point and the centroid in the iterative process.
引用
收藏
页码:274 / 283
页数:10
相关论文
共 50 条
  • [1] Privacy Protection Method for K-modes Clustering Data with Local Differential Privacy
    Zhang S.-B.
    Yuan L.-J.
    Mao X.-J.
    Zhu G.-M.
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (09): : 2181 - 2188
  • [2] Shuffled differential privacy protection method for K-Modes clustering data collection and publication
    Jiang W.
    Chen Y.
    Han Y.
    Wu Y.
    Zhou W.
    Wang H.
    [J]. Tongxin Xuebao/Journal on Communications, 2024, 45 (01): : 201 - 213
  • [3] Privacy-preserving mechanisms for k-modes clustering
    Huu Hiep Nguyen
    [J]. COMPUTERS & SECURITY, 2018, 78 : 60 - 75
  • [4] K-modes Clustering
    Anil Chaturvedi
    Paul E. Green
    J. Douglas Caroll
    [J]. Journal of Classification, 2001, 18 : 35 - 55
  • [5] K-modes clustering
    Chaturvedi, A
    Green, PE
    Carroll, JD
    [J]. JOURNAL OF CLASSIFICATION, 2001, 18 (01) : 35 - 55
  • [6] A note on K-modes clustering
    Huang, ZX
    Ng, MK
    [J]. JOURNAL OF CLASSIFICATION, 2003, 20 (02) : 257 - 261
  • [7] A Note on K-modes Clustering
    Zhexue Huang
    Michael K. Ng
    [J]. Journal of Classification, 2003, 20 : 257 - 261
  • [8] A New Possibilistic Clustering Method: The Possibilistic K-Modes
    Ammar, Asma
    Elouedi, Zied
    [J]. AI(STAR)IA 2011: ARTIFICIAL INTELLIGENCE AROUND MAN AND BEYOND, 2011, 6934 : 413 - 419
  • [9] DP- k-modes: A self-tuning k-modes clustering algorithm
    Xie, Juanying
    Wang, Mingzhao
    Lu, Xiaoxiao
    Liu, Xinglin
    Grant, Philip W.
    [J]. PATTERN RECOGNITION LETTERS, 2022, 158 : 117 - 124
  • [10] Approximation algorithms for K-modes clustering
    He, Zengyou
    Deng, Shengchun
    Xu, Xiaofei
    [J]. COMPUTATIONAL INTELLIGENCE, PT 2, PROCEEDINGS, 2006, 4114 : 296 - 302