A pragmatic android malware detection procedure

被引:25
|
作者
Palumbo, Paolo [1 ]
Sayfullina, Luiza [2 ]
Komashinskiy, Dmitriy [1 ]
Eirola, Emil [3 ]
Karhunen, Juha [2 ]
机构
[1] F Secure Corp, Helsinki, Finland
[2] Aalto Univ, Dept Informat & Comp Sci, Espoo, Finland
[3] Arcada Univ Appl Sci, Helsinki, Finland
关键词
Android; Malware detection; Static analysis; Machine learning; Classification; Ensemble learning; Feature selection;
D O I
10.1016/j.cose.2017.07.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The academic security research community has studied the Android malware detection problem extensively. Machine learning methods proposed in previous work typically achieve high reported detection performance on fixed datasets. Some of them also report reasonably fast prediction times. However, most of them are not suitable for real-world deployment because requirements for malware detection go beyond these figures of merit. In this paper, we introduce several important requirements for deploying Android malware detection systems in the real world. One such requirement is that candidate approaches should be tested against a stream of continuously evolving data. Such streams of evolving data represent the continuous flow of unknown file objects received for categorization, and provide more reliable and realistic estimate of detection performance once deployed in a production environment. As a case study we designed and implemented an ensemble approach for automatic Android malware detection that meets the real-world requirements we identified. Atomic Naive Bayes classifiers used as inputs for the Support Vector Machine ensemble are based on different APK feature categories, providing fast speed and additional reliability against the attackers due to diversification. Our case study with several malware families showed that different families are detected by different atomic classifiers. To the best of our knowledge, our work contains the first publicly available results generated against evolving data streams of nearly 1 million samples with a model trained over a massive sample set of 120,000 samples. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:689 / 701
页数:13
相关论文
共 50 条
  • [11] Category Based Malware Detection for Android
    Grampurohit, Vijayendra
    Kumar, Vijay
    Rawat, Sanjay
    Rawat, Shatrunjay
    SECURITY IN COMPUTING AND COMMUNICATIONS, 2014, 467 : 239 - 249
  • [12] A Comparison of Features for Android Malware Detection
    Leeds, Matthew
    Keffeler, Miclain
    Atkison, Travis
    PROCEEDINGS OF THE SOUTHEAST CONFERENCE ACM SE'17, 2017, : 63 - 68
  • [13] Android Malware Detection & Protection: A Survey
    Arshad, Saba
    Khan, Abid
    Shah, Munam Ali
    Ahmed, Mansoor
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2016, 7 (02) : 463 - 475
  • [14] Runtime Detection Framework for Android Malware
    Kim, TaeGuen
    Kang, BooJoong
    Im, Eul Gyu
    MOBILE INFORMATION SYSTEMS, 2018, 2018
  • [15] A framework for Android Malware detection and classification
    Murtaz, Muhammad
    Azwar, Hassan
    Ali, Syed Baqir
    Rehman, Saad
    2018 5TH IEEE INTERNATIONAL CONFERENCE ON ENGINEERING TECHNOLOGIES AND APPLIED SCIENCES (IEEE ICETAS), 2018,
  • [16] A Hybrid Detection Method for Android Malware
    Fang, Qi
    Yang, Xiaohui
    Ji, Ce
    PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, : 2127 - 2132
  • [17] MADLIRA: A Tool for Android Malware Detection
    Khanh Huu The Dam
    Touili, Tayssir
    ICISSP: PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, 2021, : 670 - 675
  • [18] Deep Android Malware Detection and Classification
    Vinayakumar, R.
    Soman, K. P.
    Poornachandran, Prabaharan
    2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2017, : 1677 - 1683
  • [19] Feature importance in Android malware detection
    Kouliaridis, Vasileios
    Kambourakis, Georgios
    Peng, Tao
    2020 IEEE 19TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2020), 2020, : 1450 - 1455
  • [20] An Android malware static detection model
    Yang H.-Y.
    Xu J.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2018, 48 (02): : 564 - 570