Efficient learning of pseudo-Boolean functions from limited training data

被引:0
|
作者
Ding, GL [1 ]
Chen, JH
Lax, R
Chen, P
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Dept Comp Sci, Baton Rouge, LA 70803 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pseudo-Boolean functions are generalizations of Boolean functions. We present a new method for learning pseudo-Boolean functions from limited training data. The objective of learning is to obtain a function f which is a good approximation of the target function f*. We define suitable criteria for the "goodness" of an approximating function. One criterion is to choose a function f that minimizes the "expected distance" with respect to a distance function d (over pairs of pseudo-Boolean functions) and the uniform distribution over all feasible pseudo-Boolean functions. We define two alternative "distance measures" over pairs of pseudo-Boolean functions, and show that they are are actually equivalent with respect to the criterion of minimal expected distance. We outline efficient algorithms for learning pseudo-Boolean functions according to these criteria. Other reasonable distance measures and "goodness" criteria are also discussed.
引用
收藏
页码:323 / 331
页数:9
相关论文
共 50 条
  • [31] Approximating Pseudo-Boolean Functions on Non-Uniform Domains
    Lax, R. F.
    Ding, Guoli
    Chen, Peter P.
    Chen, J.
    19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05), 2005, : 1754 - 1755
  • [32] Walsh Functions as Surrogate Model for Pseudo-Boolean Optimization Problems
    Lepretre, Florian
    Verel, Sebastien
    Fonlupt, Cyril
    Marion, Virginie
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 303 - 311
  • [33] Runtime analysis of the (μ+1) EA on simple pseudo-Boolean functions
    Witt, C
    EVOLUTIONARY COMPUTATION, 2006, 14 (01) : 65 - 86
  • [34] On the analysis of a simple evolutionary algorithm on quadratic pseudo-boolean functions
    Wegener, Ingo
    Witt, Carsten
    JOURNAL OF DISCRETE ALGORITHMS, 2005, 3 (01) : 61 - 78
  • [35] Symmetric approximations of pseudo-Boolean functions with applications to influence indexes
    Marichal, Jean-Luc
    Mathonet, Pierre
    APPLIED MATHEMATICS LETTERS, 2012, 25 (08) : 1121 - 1126
  • [36] Running Time Analysis of MOEA/D on Pseudo-Boolean Functions
    Huang, Zhengxin
    Zhou, Yuren
    Chen, Zefeng
    He, Xiaoyu
    Lai, Xinsheng
    Xia, Xiaoyun
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (10) : 5130 - 5141
  • [37] Optimal quadratic reformulations of fourth degree Pseudo-Boolean functions
    Verma, Amit
    Lewis, Mark
    OPTIMIZATION LETTERS, 2020, 14 (06) : 1557 - 1569
  • [38] Efficient Hill Climber for Constrained Pseudo-Boolean Optimization Problems
    Chicano, Francisco
    Whitley, Darrell
    Tinos, Renato
    GECCO'16: PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2016, : 309 - 316
  • [39] A Surrogate Model Based on Walsh Decomposition for Pseudo-Boolean Functions
    Verel, Sebastien
    Derbel, Bilel
    Liefooghe, Arnaud
    Aguirre, Hernan
    Tanaka, Kiyoshi
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XV, PT II, 2018, 11102 : 181 - 193
  • [40] The SLO Hierarchy of pseudo-Boolean Functions and Runtime of Evolutionary Algorithms
    Dang, Duc-Cuong
    Lehre, Per Kristian
    PROCEEDINGS OF THE 2024 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2024, 2024, : 1551 - 1559