Effects of the deep learning-based super-resolution method on thermal image classification applications

被引:4
|
作者
Senalp, Fatih Mehmet [1 ]
Ceylan, Murat [1 ]
机构
[1] Konya Tech Univ, Dept Elect Elect Engn, Konya, Turkey
关键词
Thermal imaging; Super-resolution; Deep learning; Data sets; Classification;
D O I
10.1007/s11042-021-11436-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Thermal imaging can be used in many sectors such as public security, health, and defense in image processing. However, thermal imaging systems are very costly, limiting their use, especially in the medical field. Also, thermal camera systems obtain blurry images with low levels of detail. Therefore, the need to improve their resolution has arisen. Here, super-resolution techniques can be a solution. Developments in deep learning in recent years have increased the success of super-resolution (SR) applications. This study proposes a new deep learning-based approach TSRGAN model for SR applications performed on a new dataset consisting of thermal images of premature babies. This dataset was created by downscaling the thermal images (ground truth) of premature babies as traditional SR studies. Thus, a dataset consisting of high-resolution (HR) and low-resolution (LR) thermal images were obtained. SR images created due to the applications were compared with LR, bicubic interpolation images, and obtained SR images using state-of-the-art models. The success of the results was evaluated using image quality metrics of peak signal to noise ratio (PSNR) and structural similarity index measure (SSIM). The results show that the proposed model achieved the second-best PSNR value and the best SSIM value. Additionally, a CNN-based classifier model was developed to perform task-based evaluation, and classification applications were carried out separately on LR, HR, and reconstructed SR image sets. Here, the success of classifying unhealthy and healthy babies was compared. This study showed that the classification accuracy of SR images increased by approximately 5% compared to the classification accuracy of LR images. In addition, the classification accuracy of SR thermal images approached the classification accuracy of HR thermal images by about 2%. Therefore, with the approach proposed in this study, it has been proven that LR thermal images can be used in classification applications by increasing their resolution. Thus, widespread use of thermal imaging systems with lower costs in the medical field will be achieved.
引用
收藏
页码:9313 / 9330
页数:18
相关论文
共 50 条
  • [41] Limitations of Learning-Based Super-Resolution
    Shoji, Hiroki
    Gohshi, Seiichi
    2015 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS), 2015, : 646 - 651
  • [42] A Review of Image Super-Resolution Approaches Based on Deep Learning and Applications in Remote Sensing
    Wang, Xuan
    Yi, Jinglei
    Guo, Jian
    Song, Yongchao
    Lyu, Jun
    Xu, Jindong
    Yan, Weiqing
    Zhao, Jindong
    Cai, Qing
    Min, Haigen
    REMOTE SENSING, 2022, 14 (21)
  • [43] Super-Resolution Reconstruction of Cytoskeleton Image Based on Deep Learning
    Hu Fen
    Lin Yang
    Hou Mengdi
    Hu Haofeng
    Pan Leiting
    Liu Tiegen
    Xu Jingjun
    ACTA OPTICA SINICA, 2020, 40 (24)
  • [44] A brief survey on deep learning based image super-resolution
    祝晓斌
    Li Shanshan
    Wang Lei
    High Technology Letters, 2021, 27 (03) : 294 - 302
  • [45] Research on Image Super-Resolution Reconstruction Based on Deep Learning
    An, Lingran
    Dai, Fengzhi
    Yuan, Yasheng
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 640 - 643
  • [46] Deep Learning Based Single Image Super-resolution: A Survey
    Viet Khanh Ha
    Jin-Chang Ren
    Xin-Ying Xu
    Sophia Zhao
    Gang Xie
    Valentin Masero
    Amir Hussain
    International Journal of Automation and Computing, 2019, 16 : 413 - 426
  • [47] Deep Learning Based Single Image Super-resolution: A Survey
    Viet Khanh Ha
    Ren, Jin-Chang
    Xu, Xin-Ying
    Zhao, Sophia
    Xie, Gang
    Masero, Valentin
    Hussain, Amir
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2019, 16 (04) : 413 - 426
  • [48] Deep Learning Based Approach Implemented to Image Super-Resolution
    Thuong Le-Tien
    Tuan Nguyen-Thanh
    Hanh-Phan Xuan
    Giang Nguyen-Truong
    Vinh Ta-Quoc
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2020, 11 (04) : 209 - 216
  • [49] Deep Learning Based Single Image Super-Resolution: A Survey
    Khanh Ha, Viet
    Ren, Jinchang
    Xu, Xinying
    Zhao, Sophia
    Xie, Gang
    Masero Vargas, Valentin
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 : 106 - 119
  • [50] A brief survey on deep learning based image super-resolution
    Zhu X.
    Li S.
    Wang L.
    High Technology Letters, 2021, 27 (03) : 294 - 302