Thermal imaging can be used in many sectors such as public security, health, and defense in image processing. However, thermal imaging systems are very costly, limiting their use, especially in the medical field. Also, thermal camera systems obtain blurry images with low levels of detail. Therefore, the need to improve their resolution has arisen. Here, super-resolution techniques can be a solution. Developments in deep learning in recent years have increased the success of super-resolution (SR) applications. This study proposes a new deep learning-based approach TSRGAN model for SR applications performed on a new dataset consisting of thermal images of premature babies. This dataset was created by downscaling the thermal images (ground truth) of premature babies as traditional SR studies. Thus, a dataset consisting of high-resolution (HR) and low-resolution (LR) thermal images were obtained. SR images created due to the applications were compared with LR, bicubic interpolation images, and obtained SR images using state-of-the-art models. The success of the results was evaluated using image quality metrics of peak signal to noise ratio (PSNR) and structural similarity index measure (SSIM). The results show that the proposed model achieved the second-best PSNR value and the best SSIM value. Additionally, a CNN-based classifier model was developed to perform task-based evaluation, and classification applications were carried out separately on LR, HR, and reconstructed SR image sets. Here, the success of classifying unhealthy and healthy babies was compared. This study showed that the classification accuracy of SR images increased by approximately 5% compared to the classification accuracy of LR images. In addition, the classification accuracy of SR thermal images approached the classification accuracy of HR thermal images by about 2%. Therefore, with the approach proposed in this study, it has been proven that LR thermal images can be used in classification applications by increasing their resolution. Thus, widespread use of thermal imaging systems with lower costs in the medical field will be achieved.