Droplet evolution in expanding flow of warm dense matter

被引:4
|
作者
Armijo, J. [1 ]
Barnard, J. J. [2 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA USA
来源
PHYSICAL REVIEW E | 2011年 / 83卷 / 05期
关键词
MOLECULAR-DYNAMICS; EVAPORATION; SIMULATION; EXPANSION; FACILITY; SIZE;
D O I
10.1103/PhysRevE.83.051507
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose a simple, self-consistent kinetic model for the evolution of a mixture of droplets and vapor expanding adiabatically in vacuum after rapid, almost isochoric heating. We study the evolution of the two-phase fluid at intermediate times between the molecular and the hydrodynamic scales, focusing on out-of-equilibrium and surface effects. We use the van der Waals equation of state as a test bed to implement our model and study the phenomenology of the upcoming second neutralized drift compression experiment (NDCX-II) at Lawrence Berkeley National Laboratory (LBNL) that uses ion beams for target heating. We find an approximate expression for the temperature difference between the droplets and the expanding gas and we check it with numerical calculations. The formula provides a useful criterion to distinguish the thermalized and nonthermalized regimes of expansion. In the thermalized case, the liquid fraction grows in a proportion that we estimate analytically, whereas, in case of too rapid expansion, a strict limit for the evaporation of droplets is derived. The range of experimental situations is discussed.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Equation of state and opacities for warm dense matter
    Cotelo, Manuel
    de la Varga, Alberto G.
    Velarde, Pedro
    de Gaufridy, Francois
    IFSA 2011 - SEVENTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, 2013, 59
  • [22] Radiative properties for warm and hot dense matter
    de la Varga, A. G.
    Velarde, P.
    Cotelo, M.
    de Gaufridy, F.
    Zeitoun, P.
    HIGH ENERGY DENSITY PHYSICS, 2011, 7 (03) : 163 - 168
  • [23] Electronic density response of warm dense matter
    Dornheim, Tobias
    Moldabekov, Zhandos A.
    Ramakrishna, Kushal
    Tolias, Panagiotis
    Baczewski, Andrew D.
    Kraus, Dominik
    Preston, Thomas R.
    Chapman, David A.
    Boehme, Maximilian P.
    Doeppner, Tilo
    Graziani, Frank
    Bonitz, Michael
    Cangi, Attila
    Vorberger, Jan
    PHYSICS OF PLASMAS, 2023, 30 (03)
  • [24] Experimental methods for warm dense matter research
    Falk, Katerina
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2018, 6
  • [25] PROPERTIES OF WARM DENSE MATTER AT LOW ENTROPIES
    PETHICK, CJ
    RAVENHALL, DG
    LATTIMER, JM
    NUCLEAR PHYSICS A, 1984, 414 (03) : 517 - 528
  • [26] Warm dense matter and cooling of supernovae remnants
    Ankit Kumar
    H. C. Das
    S. K. Biswal
    Bharat Kumar
    S. K. Patra
    The European Physical Journal C, 2020, 80
  • [27] Excited states in warm and hot dense matter
    Starrett, C. E.
    Thelen, T. Q.
    Fontes, C. J.
    Rehn, D. A.
    PHYSICAL REVIEW E, 2024, 109 (03)
  • [28] Linear and nonlinear excitations in warm dense matter
    Akbari-Moghanjoughi, M.
    Mohammadnejad, M.
    PHYSICS LETTERS A, 2019, 383 (19) : 2277 - 2284
  • [29] Warm dense matter and cooling of supernovae remnants
    Kumar, Ankit
    Das, H. C.
    Biswal, S. K.
    Kumar, Bharat
    Patra, S. K.
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (08):
  • [30] Stopping power of a heterogeneous warm dense matter
    Casas, D.
    Andreev, A. A.
    Schnuerer, M.
    Barriga-Carrasco, M. D.
    Morales, R.
    Gonzalez-Gallego, L.
    LASER AND PARTICLE BEAMS, 2016, 34 (02) : 306 - 314