Homogeneous affine surfaces: Moduli spaces

被引:9
|
作者
Brozos-Vazquez, M. [1 ]
Garcia-Rio, E. [2 ]
Gilkey, P. [3 ]
机构
[1] Univ A Coruna, Dept Matemat, Escola Politecn Super, Ferrol 15402, Spain
[2] Univ Santiago de Compostela, Fac Math, Santiago De Compostela 15782, Spain
[3] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
Ricci tensor; Moduli space; Homogeneous affine surface; 2-DIMENSIONAL MANIFOLDS; COMPACT SURFACES; RICCI TENSOR; CONNECTIONS; CLASSIFICATION; EXTENSIONS;
D O I
10.1016/j.jmaa.2016.07.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the moduli space of non-flat homogeneous affine connections on surfaces. For Type A surfaces, we write down complete sets of invariants that determine the local isomorphism type depending on the rank of the Ricci tensor and examine the structure of the associated moduli space. For Type B surfaces which are not Type A we show the corresponding moduli space is a simply connected real analytic 4-dimensional manifold with second Betti number equal to 1. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1155 / 1184
页数:30
相关论文
共 50 条