Synthesis and Characterization of Lithium-Conducting Composite Polymer-Ceramic Membranes for Use in Nonaqueous Redox Flow Batteries

被引:3
|
作者
Gandomi, Yasser Ashraf [1 ]
Krasnikova, Irina, V [2 ]
Akhmetov, Nikita O. [2 ]
Ovsyannikov, Nikolay A. [2 ]
Pogosova, Mariam A. [2 ]
Matteucci, Nicholas J. [1 ]
Mallia, Christopher T. [3 ]
Neyhouse, Bertrand J. [1 ]
Fenton, Alexis M., Jr. [1 ]
Brushett, Fikile R. [1 ]
Stevenson, Keith J. [2 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] Skolkovo Inst Sci & Technol, Ctr Electrochem Energy Storage, Moscow 121205, Russia
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
关键词
redox flow batteries; separator; membrane; lithium superionic conductor; composite polymer-ceramic membranes; nonaqueous electrochemistry; ANION-EXCHANGE MEMBRANES; ELECTROLYTES; CATHOLYTE; PHASE;
D O I
10.1021/acsami.1c13759
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Redox flow batteries (RFBs) are a burgeoning electro-chemical platform for long-duration energy storage, but present embodiments are too expensive for broad adoption. Nonaqueous redox flow batteries (NAqRFBs) seek to reduce system costs by leveraging the large electrochemical stability window of organic solvents (>3 V) to operate at high cell voltages and to facilitate the use of redox couples that are incompatible with aqueous electrolytes. However, a key challenge for emerging nonaqueous chemistries is the lack of membranes/separators with suitable combinations of selectivity, conductivity, and stability. Single-ion conducting ceramics, integrated into a flexible polymer matrix, may offer a pathway to attain performance attributes needed for enabling competitive nonaqueous systems. Here, we explore composite polymer-inorganic binder-filler membranes for lithium-based NAqRFBs, investigating two different ceramic compounds with NASICON-type (NASICON: sodium (Na) superionic conductor) crystal structure, Li1.3Al0.3Ti1.7(PO4)(3) (LATP) and Li1.4Al0.4Ge0.2Ti1.4(PO4)(3) (LAGTP), each blended with a polyvinylidene fluoride (PVDF) polymeric matrix. We characterize the physicochemical and electrochemical properties of the synthesized membranes as a function of processing conditions and formulation using a range of microscopic and electrochemical techniques. Importantly, the electrochemical stability window of the as-prepared membranes lies between 2.2-4.5 V vs Li/Li+. We then integrate select composite membranes into a single electrolyte flow cell configuration and perform polarization measurements with different redox electrolyte compositions. We find that mechanically robust, chemically stable LATP/PVDF composites can support >40 mA cm(-2) at 400 mV cell overpotential, but further improvements are needed in selectivity. Overall, the insights gained through this work begin to establish the foundational knowledge needed to advance composite polymer-inorganic membranes/separators for NAqRFBs.
引用
收藏
页码:53746 / 53757
页数:12
相关论文
共 31 条
  • [1] A review of composite polymer-ceramic electrolytes for lithium batteries
    Yu, Xingwen
    Manthiram, Arumugam
    ENERGY STORAGE MATERIALS, 2021, 34 (34) : 282 - 300
  • [2] Nanoporous Polymer-Ceramic Composite Electrolytes for Lithium Metal Batteries
    Tu, Zhengyuan
    Kambe, Yu
    Lu, Yingying
    Archer, Lynden A.
    ADVANCED ENERGY MATERIALS, 2014, 4 (02)
  • [3] Polymer-Ceramic Composite Electrolytes for Lithium Batteries: A Comparison between the Single-Ion-Conducting Polymer Matrix and Its Counterpart
    Merrill, Laura C.
    Chen, Xi Chelsea
    Zhang, Yiman
    Ford, Hunter O.
    Lou, Kun
    Zhang, Yubin
    Yang, Guang
    Wang, Yangyang
    Wang, Yan
    Schaefer, Jennifer L.
    Dudney, Nancy J.
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (09): : 8871 - 8881
  • [4] Synthesis and characterization of new polymer-ceramic nanophase composite materials
    Carotenuto, G
    Nicolais, L
    Kuang, X
    APPLIED COMPOSITE MATERIALS, 1996, 3 (02) : 103 - 116
  • [5] Mechanically Robust, Sodium-Ion Conducting Membranes for Nonaqueous Redox Flow Batteries
    Ruther, Rose E.
    Yang, Guang
    Delnick, Frank M.
    Tang, Zhijiang
    Lehmann, Michelle L.
    Saito, Tomonori
    Meng, Yujie
    Zawodzinski, Thomas A., Jr.
    Nanda, Jagjit
    ACS ENERGY LETTERS, 2018, 3 (07): : 1640 - 1647
  • [6] Synthesis and characterization of a novel polymer-ceramic system for biodegradable composite applications
    Yang, L
    Wang, J
    Hong, J
    Santerre, JP
    Pilliar, RM
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 66A (03) : 622 - 632
  • [7] Polymer-Ceramic Composite Gel Polymer Electrolyte for High-Electrochemical-Performance Lithium-Ion Batteries
    Jang, So-Hyun
    Kim, Jae-Kwang
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2016, 19 (04): : 123 - 128
  • [8] All-organic non-aqueous redox flow batteries with advanced composite polymer-ceramic Li-conductive membrane
    Ovsyannikov, N. A.
    Romadina, E., I
    Akhmetov, N. O.
    Gvozdik, N. A.
    Akkuratov, A., V
    Pogosova, M. A.
    Stevenson, K. J.
    JOURNAL OF ENERGY STORAGE, 2022, 46
  • [9] Li/Polymer Electrolyte/Water Stable Lithium-Conducting Glass Ceramics Composite for Lithium-Air Secondary Batteries with an Aqueous Electrolyte
    Zhang, Tao
    Imanishi, Nobuyuki
    Hasegawa, Satoshi
    Hirano, Atsushi
    Xie, Jian
    Takeda, Yasuo
    Yamamoto, Osamu
    Sammes, Nigel
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (12) : A965 - A969
  • [10] Conducting-polymer/iron-redox-couple composite cathodes for lithium secondary batteries
    Park, Kyu-Sung
    Schougaard, Steen B.
    Goodenough, John B.
    ADVANCED MATERIALS, 2007, 19 (06) : 848 - +