A Decomposition-based Large-scale Multi-modal Multi-objective Optimization Algorithm

被引:0
|
作者
Peng, Yiming [1 ]
Ishibuchi, Hisao [1 ]
机构
[1] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Prov Key Lab Brain Inspired Intelligent, Shenzhen 518055, Peoples R China
关键词
Evolutionary multi-objective optimization; multi-modal multi-objective optimization; diversity maintenance; MOEA/D; MOEA/D;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A multi-modal multi-objective optimization problem is a special kind of multi-objective optimization problem with multiple Pareto subsets. In this paper, we propose an efficient multi-modal multi-objective optimization algorithm based on the widely used MOEA/D algorithm. In our proposed algorithm, each weight vector has its own sub-population. With a clearing mechanism and a greedy removal strategy, our proposed algorithm can effectively preserve equivalent Pareto optimal solutions (i.e., different Pareto optimal solutions with same objective values). Experimental results show that our proposed algorithm can effectively preserve the diversity of solutions in the decision space when handling large-scale multi-modal multi-objective optimization problems.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] A large-scale multi-objective optimization based on multi-population and multi-strategy differential algorithm
    Ge, Yuan-Yuan
    Chen, De-Bao
    Zou, Feng
    Kongzhi yu Juece/Control and Decision, 2024, 39 (02): : 429 - 439
  • [32] Autoencoder evolutionary algorithm for large-scale multi-objective optimization problem
    Hu, Ziyu
    Xiao, Zhixing
    Sun, Hao
    Yang, He
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (11) : 5159 - 5172
  • [33] A Multi-objective Evolutionary Algorithm based on Decomposition for Constrained Multi-objective Optimization
    Martinez, Saul Zapotecas
    Coello, Carlos A. Coello
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 429 - 436
  • [34] An improved problem transformation algorithm for large-scale multi-objective optimization
    Sun, Yu
    Jiang, Daijin
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 89
  • [35] A multi-granularity clustering based evolutionary algorithm for large-scale sparse multi-objective optimization
    Tian, Ye
    Shao, Shuai
    Xie, Guohui
    Zhang, Xingyi
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 84
  • [36] A Population Cooperation based Particle Swarm Optimization algorithm for large-scale multi-objective optimization
    Lu, Yongfan
    Li, Bingdong
    Liu, Shengcai
    Zhou, Aimin
    SWARM AND EVOLUTIONARY COMPUTATION, 2023, 83
  • [37] A decomposition-based multi-objective evolutionary algorithm with quality indicator
    Luo, Jianping
    Yang, Yun
    Li, Xia
    Liu, Qiqi
    Chen, Minrong
    Gao, Kaizhou
    SWARM AND EVOLUTIONARY COMPUTATION, 2018, 39 : 339 - 355
  • [38] Sparse large-scale multi-objective optimization algorithm based on impact factor assistance
    Hu, Ziyu
    Nie, Xuetao
    Sun, Hao
    Wei, Lixin
    Zhang, Jinlu
    Wang, Cong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 151
  • [39] Objective contribution decomposition method and multi-population optimization strategy for large-scale multi-objective optimization problems
    Liu, Jin
    Liu, Ruochen
    INFORMATION SCIENCES, 2024, 678
  • [40] A decomposition-based archiving approach for multi-objective evolutionary optimization
    Zhang, Yong
    Gong, Dun-wei
    Sun, Jian-yong
    Qu, Bo-yang
    INFORMATION SCIENCES, 2018, 430 : 397 - 413