3-list-coloring planar graphs of girth 4

被引:2
|
作者
Guo, Jun-Lin [1 ]
Wang, Yue-Li [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Informat Management, Taipei, Taiwan
关键词
Choosability; Listing coloring; Planar graphs;
D O I
10.1016/j.disc.2010.12.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Thomassen (1995) [4], Thomassen proved that planar graphs of girth at least 5 are 3-choosable. In Li (2009)[3], Li improved Thomassen's result by proving that planar graphs of girth 4 with no 4-cycle sharing a vertex with another 4- or 5-cycle are 3-choosable. In this paper, we prove that planar graphs of girth 4 with no 4-cycle sharing an edge with another 4- or 5-cycle are 3-choosable. It is clear that our result strengthens Li's result. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:413 / 417
页数:5
相关论文
共 50 条
  • [31] List Injective Coloring of Planar Graphs
    Wen-wen LI
    Jian-sheng CAI
    Gui-ying YAN
    Acta Mathematicae Applicatae Sinica, 2022, 38 (03) : 614 - 626
  • [32] List Injective Coloring of Planar Graphs
    Wen-wen Li
    Jian-sheng Cai
    Gui-ying Yan
    Acta Mathematicae Applicatae Sinica, English Series, 2022, 38 : 614 - 626
  • [33] List injective Coloring of Planar Graphs
    Bu, Yuehua
    Wang, Chao
    Yang, Sheng
    ARS COMBINATORIA, 2018, 141 : 191 - 211
  • [34] Dynamic coloring and list dynamic coloring of planar graphs
    Kim, Seog-Jin
    Lee, Sang June
    Park, Won-Jin
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 2207 - 2212
  • [35] An oriented coloring of planar graphs with girth at least five
    Pinlou, Alexandre
    DISCRETE MATHEMATICS, 2009, 309 (08) : 2108 - 2118
  • [36] Injective (Δ+1)-coloring of planar graphs with girth 6
    Borodin, O. V.
    Ivanova, A. O.
    SIBERIAN MATHEMATICAL JOURNAL, 2011, 52 (01) : 23 - 29
  • [37] Acyclic edge coloring of planar graphs with large girth
    Yu, Dongxiao
    Hou, Jianfeng
    Liu, Guizhen
    Liu, Bin
    Xu, Lan
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (47-49) : 5196 - 5200
  • [38] The Game Coloring Number of Planar Graphs with a Specific Girth
    Keaitsuda Maneeruk Nakprasit
    Kittikorn Nakprasit
    Graphs and Combinatorics, 2018, 34 : 349 - 354
  • [39] The game coloring number of planar graphs with a given girth
    Sekiguchi, Yosuke
    DISCRETE MATHEMATICS, 2014, 330 : 11 - 16
  • [40] Injective (Δ + 1)-coloring of planar graphs with girth 6
    O. V. Borodin
    A. O. Ivanova
    Siberian Mathematical Journal, 2011, 52 : 23 - 29