A note on non-R-cospectral graphs

被引:0
|
作者
Liu, Fenjin [1 ,2 ]
Wang, Wei [2 ]
机构
[1] Changan Univ, Sch Sci, Xian, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R China
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2017年 / 24卷 / 01期
基金
中国国家自然科学基金;
关键词
R-cospectral graphs; Walk generating function; Irrational orthogonal matrix; SPECTRAL CHARACTERIZATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two graphs G and H are called R-cospectral if A(G)+yJ and A(H)+yJ where A(G), A(H) are the adjacency matrices of G and H, respectively, J is the all-one matrix) have the same spectrum for all y is an element of R. In this note, we give a necessary condition for having R-cospectral graphs. Further, we provide a sufficient condition ensuring only irrational orthogonal similarity between certain cospectral graphs. Some concrete examples are also supplied to exemplify the main results.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [41] Large Families of Cospectral Graphs
    Akos Seress
    Designs, Codes and Cryptography, 2000, 21 : 205 - 208
  • [42] On adjacency and Laplacian cospectral switching non-isomorphic signed graphs
    Shamsher, Tahir
    Pirzada, Shariefuddin
    Bhat, Mushtaq A.
    ARS MATHEMATICA CONTEMPORANEA, 2023, 23 (03) : 1 - 20
  • [43] Non-geometric cospectral mates of line graphs with a linear representation
    Ferdinand Ihringer
    Journal of Geometry, 2023, 114
  • [44] On the construction of cospectral nonisomorphic bipartite graphs
    Kannan, M. Rajesh
    Pragada, Shivaramakrishna
    Wankhede, Hitesh
    DISCRETE MATHEMATICS, 2022, 345 (08)
  • [45] On the construction of cospectral nonisomorphic bipartite graphs
    Kannan, M. Rajesh
    Pragada, Shivaramakrishna
    Wankhede, Hitesh
    arXiv, 2021,
  • [46] Cospectral graphs and the generalized adjacency matrix
    van Dam, E. R.
    Haemers, W. H.
    Koolen, J. H.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) : 33 - 41
  • [47] Constructing families of cospectral regular graphs
    Haythorpe, M.
    Newcombe, A.
    COMBINATORICS PROBABILITY & COMPUTING, 2020, 29 (05): : 664 - 671
  • [48] CONSTRUCTION OF COSPECTRAL INTEGRAL REGULAR GRAPHS
    Bapat, Ravindra B.
    Karimi, Masoud
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (03) : 595 - 609
  • [49] A construction of cospectral graphs for the normalized Laplacian
    Butler, Steve
    Grout, Jason
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [50] The Overgraphs of Generalized Cospectral Controllable Graphs
    Farrugia, Alexander
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (01):