A note on non-R-cospectral graphs

被引:0
|
作者
Liu, Fenjin [1 ,2 ]
Wang, Wei [2 ]
机构
[1] Changan Univ, Sch Sci, Xian, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R China
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2017年 / 24卷 / 01期
基金
中国国家自然科学基金;
关键词
R-cospectral graphs; Walk generating function; Irrational orthogonal matrix; SPECTRAL CHARACTERIZATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two graphs G and H are called R-cospectral if A(G)+yJ and A(H)+yJ where A(G), A(H) are the adjacency matrices of G and H, respectively, J is the all-one matrix) have the same spectrum for all y is an element of R. In this note, we give a necessary condition for having R-cospectral graphs. Further, we provide a sufficient condition ensuring only irrational orthogonal similarity between certain cospectral graphs. Some concrete examples are also supplied to exemplify the main results.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [1] A NOTE ON COSPECTRAL GRAPHS
    JOHNSON, CR
    NEWMAN, M
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 28 (01) : 96 - 103
  • [2] Note on cospectral graphs with simple eigenvalues
    John, PE
    Ortlepp, T
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2003, (48) : 49 - 53
  • [3] On cospectral oriented graphs and cospectral signed graphs
    Stanic, Z.
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19): : 3689 - 3701
  • [4] Constructing cospectral graphs by unfolding non-bipartite graphs☆
    Kannan, M. Rajesh
    Pragada, Shivaramakrishna
    Wankhede, Hitesh
    DISCRETE APPLIED MATHEMATICS, 2024, 357 : 264 - 273
  • [5] A note about cospectral graphs for the adjacency and normalized Laplacian matrices
    Butler, Steve
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (03): : 387 - 390
  • [6] Graphs cospectral with Kneser graphs
    Haemers, Willem H.
    Ramezani, Farzaneh
    COMBINATORICS AND GRAPHS, 2010, 531 : 159 - +
  • [7] Construction of cospectral graphs
    Supriyo Dutta
    Bibhas Adhikari
    Journal of Algebraic Combinatorics, 2020, 52 : 215 - 235
  • [8] Non-isomorphic graphs with cospectral symmetric powers
    Barghi, Amir Rahnamai
    Ponomarenko, Ilya
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [9] Constructing pairs of equienergetic and non-cospectral graphs
    Bonifacio, Andreas S.
    Vinagre, Cybele T. M.
    de Abreu, Nair Maria Maia
    APPLIED MATHEMATICS LETTERS, 2008, 21 (04) : 338 - 341
  • [10] Enumeration of cospectral graphs
    Haemers, WH
    Spence, E
    EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (02) : 199 - 211