Very and more or less in non-commutative fuzzy logic

被引:0
|
作者
Eslami, Esfandiar [1 ]
Khosravi, Hamid
Sadeghi, Faramarz
机构
[1] Shahid Bahonar Univ Kerman, Fac Math & Comp Sci, Kerman, Iran
[2] Int Ctr Sci & High Technol & Environm Sci, Kerman, Iran
关键词
L-fuzzy modifier; pseudo-BL algebra; very; more or less; linguistic hedges; non-commutative fuzzy logic;
D O I
10.1007/s00500-007-0199-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we consider fuzzy subsets of a universe as L-fuzzy subsets instead of [ 0, 1 ]-valued, where L is a complete lattice. We enrich the lattice L by adding some suitable operations to make it into a pseudo-BL algebra. Since BL algebras are main frameworks of fuzzy logic, we propose to consider the non-commutative BL-algebras which are more natural for modeling the fuzzy notions. Based on reasoning with in non-commutative fuzzy logic we model the linguistic modifiers such as very and more or less and give an appropriate membership function for each one by taking into account the context of the given fuzzy notion by means of resemblance L-fuzzy relations.
引用
收藏
页码:275 / 279
页数:5
相关论文
共 50 条
  • [41] Non-commutative probability and non-commutative processes: Beyond the Heisenberg algebra
    Mendes, R. Vilela
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (09)
  • [42] Fuzzy presubsets as non-idempotent and non-commutative classifications of subalgebras
    Hoehle, Ulrich
    FUZZY SETS AND SYSTEMS, 2012, 197 : 14 - 44
  • [43] Witt vectors, commutative and non-commutative
    Kaledin, D. B.
    RUSSIAN MATHEMATICAL SURVEYS, 2018, 73 (01) : 1 - 30
  • [44] Non-associative, Non-commutative Multi-modal Linear Logic
    Blaisdell, Eben
    Kanovich, Max
    Kuznetsov, Stepan L.
    Pimentel, Elaine
    Scedrov, Andre
    AUTOMATED REASONING, IJCAR 2022, 2022, 13385 : 449 - 467
  • [45] Non-commutative gauge theory on fuzzy CP2
    Steinacker, H
    MODERN PHYSICS LETTERS A, 2005, 20 (17-18) : 1345 - 1357
  • [46] Non-commutative renormalization
    Rivasseau, Vincent
    QUANTUM SPACES: POINCARE SEMINAR 2007, 2007, 53 : 19 - 107
  • [47] Non-commutative fluids
    Polychronakos, Alexios P.
    QUANTUM SPACES: POINCARE SEMINAR 2007, 2007, 53 : 109 - 159
  • [48] On Non-commutative Spreadability
    Griseta, Maria Elena
    OPERATOR AND MATRIX THEORY, FUNCTION SPACES, AND APPLICATIONS, IWOTA 2022, 2024, 295 : 189 - 202
  • [49] Non-commutative amoebas
    Mikhalkin, Grigory
    Shkolnikov, Mikhail
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2022, 54 (02) : 335 - 368
  • [50] Non-commutative worlds
    Kauffman, LH
    NEW JOURNAL OF PHYSICS, 2004, 6 : 1 - 47