GRAPH MAPS WITH ZERO TOPOLOGICAL ENTROPY AND SEQUENCE ENTROPY PAIRS

被引:1
|
作者
Li, Jian [1 ]
Liang, Xianjuan [1 ]
Oprocha, Piotr [2 ,3 ]
机构
[1] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
[2] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Univ Ostrava, IT4Innovat, Natl Supercomp Ctr, Inst Res & Applicat Fuzzy Modeling, 30 Dubna 22, Ostrava 70103, Czech Republic
关键词
Graph map; topological entropy; topological sequence entropy; tameness; Li-Yorke chaos; non-separable points; IN-pair; IT-pair; OMEGA-LIMIT SETS;
D O I
10.1090/proc/15578
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that graph map with zero topological entropy is Li-Yorke chaotic if and only if it has an NS-pair (a pair of non-separable points containing in a same solenoidal omega-limit set), and a non-diagonal pair is an NS-pair if and only if it is an IN-pair if and only if it is an IT-pair. This completes characterization of zero topological sequence entropy for graph maps.
引用
收藏
页码:4757 / 4770
页数:14
相关论文
共 50 条
  • [31] Relative sequence entropy pairs for a measure and relative topological Kronecker factor
    Ahn, YH
    Lee, J
    Park, KK
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 42 (04) : 857 - 869
  • [32] Topological Entropy of a Graph Map
    Sun, Tai Xiang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (02) : 194 - 208
  • [33] Topological Entropy of a Graph Map
    Tai Xiang SUN
    Acta Mathematica Sinica,English Series, 2018, (02) : 194 - 208
  • [34] Topological Entropy of a Graph Map
    Tai Xiang SUN
    Acta Mathematica Sinica, 2018, 34 (02) : 194 - 208
  • [35] Topological entropy of a graph map
    Tai Xiang Sun
    Acta Mathematica Sinica, English Series, 2018, 34 : 194 - 208
  • [36] TOPOLOGICAL PRESSURE AND TOPOLOGICAL ENTROPY OF A SEMIGROUP OF MAPS
    Ma, Dongkui
    Wu, Min
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 31 (02) : 545 - 557
  • [37] Topological sequence entropy of w-limit sets of interval maps
    Cánovas, JS
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2001, 7 (04) : 781 - 786
  • [38] Topology and topological sequence entropy
    Snoha, L'ubomir
    Ye, Xiangdong
    Zhang, Ruifeng
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (02) : 205 - 296
  • [39] Topology and topological sequence entropy
    L’ubomír Snoha
    Xiangdong Ye
    Ruifeng Zhang
    Science China Mathematics, 2020, 63 : 205 - 296
  • [40] Topology and topological sequence entropy
    L'ubomír Snoha
    Xiangdong Ye
    Ruifeng Zhang
    Science China(Mathematics), 2020, 63 (02) : 205 - 296