GRAPH MAPS WITH ZERO TOPOLOGICAL ENTROPY AND SEQUENCE ENTROPY PAIRS

被引:1
|
作者
Li, Jian [1 ]
Liang, Xianjuan [1 ]
Oprocha, Piotr [2 ,3 ]
机构
[1] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
[2] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Univ Ostrava, IT4Innovat, Natl Supercomp Ctr, Inst Res & Applicat Fuzzy Modeling, 30 Dubna 22, Ostrava 70103, Czech Republic
关键词
Graph map; topological entropy; topological sequence entropy; tameness; Li-Yorke chaos; non-separable points; IN-pair; IT-pair; OMEGA-LIMIT SETS;
D O I
10.1090/proc/15578
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that graph map with zero topological entropy is Li-Yorke chaotic if and only if it has an NS-pair (a pair of non-separable points containing in a same solenoidal omega-limit set), and a non-diagonal pair is an NS-pair if and only if it is an IN-pair if and only if it is an IT-pair. This completes characterization of zero topological sequence entropy for graph maps.
引用
收藏
页码:4757 / 4770
页数:14
相关论文
共 50 条
  • [1] On dynamics of graph maps with zero topological entropy
    Li, Jian
    Oprocha, Piotr
    Yang, Yini
    Zeng, Tiaoying
    NONLINEARITY, 2017, 30 (12) : 4260 - 4276
  • [2] Topological entropy zero and asymptotic pairs
    Downarowicz, T.
    Lacroix, Y.
    ISRAEL JOURNAL OF MATHEMATICS, 2012, 189 (01) : 323 - 336
  • [3] Topological entropy zero and asymptotic pairs
    T. Downarowicz
    Y. Lacroix
    Israel Journal of Mathematics, 2012, 189 : 323 - 336
  • [4] Topological entropy and periods of graph maps
    Llibre, Jaume
    Saghin, Radu
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2012, 18 (04) : 589 - 598
  • [5] Topological sequence entropy for maps of the interval
    Hric, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (07) : 2045 - 2052
  • [6] Topological sequence entropy of interval maps
    Cánovas, JS
    NONLINEARITY, 2004, 17 (01) : 49 - 56
  • [7] Topological sequence entropy and topological dynamics of interval maps
    Canovas, Jose S.
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2007, 14 (01): : 47 - 54
  • [8] Topological structure and entropy of mixing graph maps
    Haranczyk, Grzegorz
    Kwietniak, Dominik
    Oprocha, Piotr
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 1587 - 1614
  • [9] Topological sequence entropy and topological dynamics of tree maps
    Canovas, Jose S.
    Daghar, Aymen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 525 (01)
  • [10] Supremum topological sequence entropy of circle maps
    Kuang, Rui
    Yang, Yini
    TOPOLOGY AND ITS APPLICATIONS, 2021, 295