On the Inverse to the Harmonic Oscillator

被引:7
|
作者
Cappiello, Marco [1 ]
Rodino, Luigi [1 ]
Toft, Joachim [2 ]
机构
[1] Univ Turin, Dipartimento Matemat G Peano, Turin, Italy
[2] Linnaeus Univ, Dept Math, S-35195 Vaxjo, Sweden
关键词
46F05; 35S05; Secondary; 33C10; Primary; 35Q40; 30Gxx; Ultradistributions; Harmonic oscillator; Gelfand-Shilov estimates; Inverse; GELFAND-SHILOV SPACES; PSEUDODIFFERENTIAL-OPERATORS; HOLOMORPHIC EXTENSIONS; GENERALIZED-FUNCTIONS; EXPONENTIAL DECAY; EQUATIONS;
D O I
10.1080/03605302.2015.1007145
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let b ( d ) be the Weyl symbol of the inverse to the harmonic oscillator on R- d . We prove that b ( d ) and its derivatives satisfy convenient bounds of Gevrey and Gelfand-Shilov type, and obtain explicit expressions for b ( d ). In the even-dimensional case we characterize b ( d ) in terms of elementary functions. In the analysis we use properties of radial symmetry and a combination of different techniques involving classical a priori estimates, commutator identities, power series and asymptotic expansions.
引用
收藏
页码:1096 / 1118
页数:23
相关论文
共 50 条