On the Inverse to the Harmonic Oscillator

被引:7
|
作者
Cappiello, Marco [1 ]
Rodino, Luigi [1 ]
Toft, Joachim [2 ]
机构
[1] Univ Turin, Dipartimento Matemat G Peano, Turin, Italy
[2] Linnaeus Univ, Dept Math, S-35195 Vaxjo, Sweden
关键词
46F05; 35S05; Secondary; 33C10; Primary; 35Q40; 30Gxx; Ultradistributions; Harmonic oscillator; Gelfand-Shilov estimates; Inverse; GELFAND-SHILOV SPACES; PSEUDODIFFERENTIAL-OPERATORS; HOLOMORPHIC EXTENSIONS; GENERALIZED-FUNCTIONS; EXPONENTIAL DECAY; EQUATIONS;
D O I
10.1080/03605302.2015.1007145
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let b ( d ) be the Weyl symbol of the inverse to the harmonic oscillator on R- d . We prove that b ( d ) and its derivatives satisfy convenient bounds of Gevrey and Gelfand-Shilov type, and obtain explicit expressions for b ( d ). In the even-dimensional case we characterize b ( d ) in terms of elementary functions. In the analysis we use properties of radial symmetry and a combination of different techniques involving classical a priori estimates, commutator identities, power series and asymptotic expansions.
引用
收藏
页码:1096 / 1118
页数:23
相关论文
共 50 条
  • [1] On an Inverse Spectral Problem for a Perturbed Harmonic Oscillator
    Mahmudova, M. G.
    Khanmamedov, A. Kh
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2018, 8 (02): : 181 - 191
  • [2] An Inverse Problem for an Harmonic Oscillator Perturbed by Potential: Uniqueness
    Dmitri Chelkak
    Pavel Kargaev
    Evgeni Korotyaev
    Letters in Mathematical Physics, 2003, 64 : 7 - 21
  • [3] Inverse Problem for Harmonic Oscillator Perturbed by Potential, Characterization
    Dmitri Chelkak
    Pavel Kargaev
    Evgeni Korotyaev
    Communications in Mathematical Physics, 2004, 249 : 133 - 196
  • [4] An inverse problem for an harmonic oscillator perturbed by potential: Uniqueness
    Chelkak, D
    Kargaev, P
    Korotyaev, E
    LETTERS IN MATHEMATICAL PHYSICS, 2003, 64 (01) : 7 - 21
  • [5] Inverse problem for harmonic oscillator perturbed by potential, characterization
    Chelkak, D
    Kargaev, P
    Korotyaev, E
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 249 (01) : 133 - 196
  • [6] On a central algorithm for calculation of the inverse of the harmonic oscillator in the spaces of orbits
    Ugulava, Duglas
    Zarnadze, David
    JOURNAL OF COMPLEXITY, 2022, 68
  • [7] Spectral inverse problem for q-deformed harmonic oscillator
    P K Bera
    J Datta
    Pramana, 2006, 67 : 1023 - 1035
  • [8] Spectral inverse problem for q-deformed harmonic oscillator
    Bera, P. K.
    Datta, J.
    PRAMANA-JOURNAL OF PHYSICS, 2006, 67 (06): : 1023 - 1035
  • [9] THE INVERSE SPECTRAL PROBLEM FOR THE PERTURBED HARMONIC OSCILLATOR ON THE ENTIRE AXIS
    Bagirova, Sevinj M.
    Khanmamedov, Agil Kh
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2018, 44 (02): : 285 - 294
  • [10] Duality between the quantum inverted harmonic oscillator and inverse square potentials
    Sundaram, Sriram
    Burgess, C. P.
    O'Dell, D. H. J.
    NEW JOURNAL OF PHYSICS, 2024, 26 (05):