Normal arcs and curves of K-order k+1

被引:0
|
作者
Spoar, G [1 ]
机构
[1] UNIV GUELPH,DEPT MATH & STAT,GUELPH,ON N1G 2W1,CANADA
关键词
multiplicities; order characteristics; fundamental number;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Multiplicities are given to singular points on planar arcs or curves of order k + 1 with respect to a set K of order characteristics with fundamental number k. It is shown that the sum of the multiplicities on such arcs is at most k + 1.
引用
收藏
页码:43 / 50
页数:8
相关论文
共 50 条
  • [31] DECOMPOSITION THEOREM AND k-HYPERCONNECTION EXPRESSIONS FOR GENERAL k-ORDER COFACTORS
    黄汝激
    JournalofElectronics(China), 1991, (04) : 307 - 316
  • [32] (k+1)-Cores Have k-Factors
    Chan, Siu On
    Molloy, Michael
    COMBINATORICS PROBABILITY & COMPUTING, 2012, 21 (06): : 882 - 896
  • [33] On k- versus (k+1)-leaf powers
    Brandstaedt, Andreas
    Wagner, Peter
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PROCEEDINGS, 2008, 5165 : 171 - 179
  • [34] Orthogonal [k-1,k+1]-factorizations in graphs
    Liu, GZ
    Yan, GY
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1996, 51 (02) : 195 - 200
  • [35] The extensibility of Diophantine pairs {k-1, k+1}
    Fujita, Yasutsugu
    JOURNAL OF NUMBER THEORY, 2008, 128 (02) : 322 - 353
  • [36] Independent (k+1)-domination in k-trees
    Borowiecki, Mieczyslaw
    Fiedorowicz, Anna
    Sidorowicz, Elzbieta
    Tuza, Zsolt
    DISCRETE APPLIED MATHEMATICS, 2020, 284 : 99 - 110
  • [37] Sets of k-recurrence but not (k+1)-recurrence
    Frantzikinakis, Nikos
    Lesigne, Emmanuel
    Wierdl, Mate
    ANNALES DE L INSTITUT FOURIER, 2006, 56 (04) : 839 - 849
  • [38] 从N=k到N=k+1
    翟连林
    岳荫巍
    中学数学教学, 1984, (05) : 25 - 28
  • [39] A K Out of K+1 Visual Cryptography Scheme
    Liu, Benlan
    Li, Shundong
    Wang, Daoshun
    PROCEEDINGS OF THE 2015 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER ENGINEERING AND ELECTRONICS (ICECEE 2015), 2015, 24 : 1636 - 1641
  • [40] AN INVERSE EIGENPROBLEM FOR GENERALIZED REFLEXIVE MATRICES WITH NORMAL {K+1}-POTENCIES
    Xu, Wei-Ru
    Chen, Guo-Liang
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2016, 31 : 100 - 119