BIOMASS ALLOMETRIC FUNCTION WITH SATELLITE IMAGES OF HIGH SPATIAL RESOLUTION

被引:1
|
作者
de Macedo, Fabricio Lopes [1 ]
de Oliveira Sousa, Adelia Maria [2 ]
Goncalves, Ana Cristina [3 ]
Silva, Helio Ricardo [4 ]
Ferreira Rodrigues, Ricardo Antonio [4 ]
机构
[1] Univ Tras Os Montes & Alto Douro, Ctr Invest & Tecnol Agroambientais & Biol, P-5000801 Vila Real, Portugal
[2] Univ Evora, Dept Engn Rural, Escola Ciencias & Tecnol, Inst Ciencias Agr & Ambientais Mediterran, Apartado 94, P-7002554 Evora, Portugal
[3] Univ Evora, Dept Engn Rural, Inst Ciencias & Tecnol, Inst Ciencias Agr & Ambientais Mediterran, Apartado 94, P-7002554 Evora, Portugal
[4] Univ Estadual Paulista Julio de Mesquita Filho Un, Dept Fitossanidade Engn Rural & Solos, Av Brasil 56, BR-15385000 Ilha Solteira, SP, Brazil
来源
CIENCIA FLORESTAL | 2018年 / 28卷 / 03期
关键词
Eucalyptus; pleiades; vegetation indices; FOREST; CARBON;
D O I
10.5902/1980509833368
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The aim of this study was to fit functions to estimate with data derived from high spatial resolution satellite images, the total biomass of Eucalyptus at local and regional scale. For this purpose, models were fit combining values of biomass estimated from forest inventory plots and vegetation indices based on Pleiades images. The function with which presented the best performance in the estimation of the total biomass, was the one that used as an independent variable the IV-SAVI, presenting a coefficient of determination (R-2) of 64.6%, however without great difference for the NDVI and SR. The fit functions can be used in other regions for the same species, and similar climate and local characteristics. This approach can be used as a low cost tool to produce estimations of biomass at local and regional level.
引用
收藏
页码:960 / 969
页数:10
相关论文
共 50 条
  • [21] DEM Accuracy of High Resolution Satellite Images
    Yanalak, Mustafa
    Musaoglu, Nebiye
    Ipbuker, Cengizhan
    Sertel, Elif
    Kaya, Sinasi
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2012, PT III, 2012, 7335 : 471 - 480
  • [22] A SPATIAL-RESOLUTION ENHANCEMENT WITH THE OVERSAMPLED LOW-RESOLUTION OF SATELLITE IMAGES
    ARAI, K
    MATSUMOTO, M
    REMOTE SENSING OF EARTHS SURFACE AND ATMOSPHERE, 1993, 14 (03): : 241 - 244
  • [23] Estimation and dynamics of above ground biomass with very high resolution satellite images in Pinus pinaster stands
    Goncalves, Ana Cristina
    Sousa, Adelia M. O.
    Mesquita, Paulo G.
    BIOMASS & BIOENERGY, 2017, 106 : 146 - 154
  • [24] WOODED HEDGEROWS CHARACTERIZATION IN RURAL LANDSCAPE USING VERY HIGH SPATIAL RESOLUTION SATELLITE IMAGES
    Vannier, Clemence
    Hubert-Moy, Laurence
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 347 - 350
  • [25] AUTOMATIC MULTI-SCALE SEGMENTATION OF HIGH SPATIAL RESOLUTION SATELLITE IMAGES USING WATERSHEDS
    Sahin, Kerem
    Ulusoy, Ilkay
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 2505 - 2508
  • [26] Forest Dynamics Study Using Aerial Photos and Satellite Images with Very High Spatial Resolution
    Naydenova, V.
    Jelev, G.
    RAST 2009: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SPACE TECHNOLOGIES, 2009, : 344 - 348
  • [27] Classification of high resolution satellite images using spatial constraints-based fuzzy clustering
    Singh, Pankaj Pratap
    Garg, Rahul Dev
    JOURNAL OF APPLIED REMOTE SENSING, 2014, 8
  • [28] Extraction of marine debris in the Sea of Japan using high-spatial-resolution satellite images
    Aoyama, Takashi
    REMOTE SENSING OF THE OCEANS AND INLAND WATERS: TECHNIQUES, APPLICATIONS, AND CHALLENGES, 2016, 9878
  • [29] High-resolution aerial images for improving spatial resolution of spaceborne images
    Li, Jun
    Zhou, Yueqin
    Li, Deren
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 1999, 12 (04): : 461 - 466
  • [30] Auto-registration of medium and high spatial resolution satellite images by integrating improved SIFT and spatial consistency constraints
    Li, Shanshan
    Peng, Man
    Zhang, Bing
    Feng, Xuxiang
    Wu, Yewei
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (14) : 5635 - 5650