Collisions of room-temperature helium with ultracold lithium and the van der Waals bound state of HeLi

被引:18
|
作者
Makrides, Constantinos [1 ,2 ]
Barker, Daniel S. [3 ]
Fedchak, James A. [3 ]
Scherschligt, Julia [3 ]
Eckel, Stephen [3 ]
Tiesinga, Eite [1 ,3 ,4 ]
机构
[1] Joint Quantum Inst, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[3] NIST, Gaithersburg, MD 20899 USA
[4] Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
关键词
ALKALI; POTENTIALS; SCATTERING; ENERGIES; SYSTEMS; GAS;
D O I
10.1103/PhysRevA.101.012702
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We have computed the thermally averaged total, elastic rate coefficient for the collision of a room-temperature helium atom with an ultracold lithium atom. This rate coefficient has been computed as part of the characterization of a cold-atom vacuum sensor based on laser-cooled Li-6 or Li-7 atoms that will operate in the ultrahigh-vacuum (p < 10(-6) Pa) and extreme-high-vacuum (p < 10(-10) Pa) regimes. The analysis involves computing the X (2) Sigma(+) HeLi Born-Oppenheimer potential followed by the numerical solution of the relevant radial Schrodinger equation. The potential is computed using a single-reference-coupled-cluster electronic-structure method with basis sets of different completeness in order to characterize our uncertainty budget. We predict that the rate coefficient for a 300 K helium gas and a 1 mu K Li gas is 1.467(13) x 10(-9) cm(3)/s for He-4 + Li-6 and 1.471(13) x 10(-9) cm(3)/s for He-4 + Li-7, where the numbers in parentheses are the one-standard-deviation uncertainties in the last two significant digits. We quantify the temperature dependence as well. Finally, we evaluate the s-wave scattering length and binding of the single van der Waals bound state of HeLi. We predict that this weakly bound level has a binding energy of -0.0064(43) x hc cm(-1) and -0.0122(67) x hc cm(-1) for He-4 + Li-6 and He-4 + Li-7, respectively. The calculated binding energy of He-4 + Li-7 is consistent with the sole experimental determination.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Nearly Room-Temperature Ferromagnetism in a Pressure-Induced Correlated Metallic State of the van der Waals Insulator CrGeTe3
    Bhoi, Dilip
    Gouchi, Jun
    Hiraoka, Naoka
    Zhang, Yufeng
    Ogita, Norio
    Hasegawa, Takumi
    Kitagawa, Kentaro
    Takagi, Hidenori
    Kim, Kee Hoon
    Uwatoko, Yoshiya
    PHYSICAL REVIEW LETTERS, 2021, 127 (21)
  • [32] Magnetism and spin dynamics in room-temperature van der Waals magnet Fe5GeTe2
    Alahmed, Laith
    Nepal, Bhuwan
    Macy, Juan
    Zheng, Wenkai
    Casas, Brian
    Sapkota, Arjun
    Jones, Nicholas
    Mazza, Alessandro R.
    Brahlek, Matthew
    Jin, Wencan
    Mahjouri-Samani, Masoud
    Zhang, Steven S. -L.
    Mewes, Claudia
    Balicas, Luis
    Mewes, Tim
    Li, Peng
    2D MATERIALS, 2021, 8 (04)
  • [33] Giant coercivity enhancement in a room-temperature van der Waals magnet through substitutional metal-doping
    Ahn, Hyo-Bin
    Jung, Soon-Gil
    Lim, Hyungjong
    Kim, Kwangsu
    Kim, Sanghoon
    Park, Tae-Eon
    Park, Tuson
    Lee, Changgu
    NANOSCALE, 2023, 15 (26) : 11290 - 11298
  • [34] Van der Waals Superstructure and Twisting in Self-Intercalated Magnet with Near Room-Temperature Perpendicular Ferromagnetism
    Coughlin, Amanda L.
    Xie, Dongyue
    Zhan, Xun
    Yao, Yue
    Deng, Liangzi
    Hewa-Walpitage, Heshan
    Bontke, Trevor
    Chu, Ching-Wu
    Li, Yan
    Wang, Jian
    Fertig, Herbert A.
    Zhang, Shixiong
    NANO LETTERS, 2021, 21 (22) : 9517 - 9525
  • [35] Room-temperature low-threshold avalanche effect in stepwise van-der-Waals homojunction photodiodes
    Wang, Hailu
    Xia, Hui
    Liu, Yaqian
    Chen, Yue
    Xie, Runzhang
    Wang, Zhen
    Wang, Peng
    Miao, Jinshui
    Wang, Fang
    Li, Tianxin
    Fu, Lan
    Martyniuk, Piotr
    Xu, Jianbin
    Hu, Weida
    Lu, Wei
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [36] Tunable room-temperature ferromagnetism in Co-doped two-dimensional van der Waals ZnO
    Chen, Rui
    Luo, Fuchuan
    Liu, Yuzi
    Song, Yu
    Dong, Yu
    Wu, Shan
    Cao, Jinhua
    Yang, Fuyi
    N'Diaye, Alpha
    Shafer, Padraic
    Liu, Yin
    Lou, Shuai
    Huang, Junwei
    Chen, Xiang
    Fang, Zixuan
    Wang, Qingjun
    Jin, Dafei
    Cheng, Ran
    Yuan, Hongtao
    Birgeneau, Robert J.
    Yao, Jie
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [37] Room-Temperature Antisymmetric Magnetoresistance in van der Waals Ferromagnet Fe3GaTe2 Nanosheets
    Hu, Guojing
    Guo, Hui
    Lv, Senhao
    Li, Linxuan
    Wang, Yunhao
    Han, Yechao
    Pan, Lulu
    Xie, Yulan
    Yu, Weiqi
    Zhu, Ke
    Qi, Qi
    Xian, Guoyu
    Zhu, Shiyu
    Shi, Jinan
    Bao, Lihong
    Lin, Xiao
    Zhou, Wu
    Yang, Haitao
    Gao, Hong-jun
    ADVANCED MATERIALS, 2024, 36 (27)
  • [38] Exciton polariton interactions in Van der Waals superlattices at room temperature
    Jiaxin Zhao
    Antonio Fieramosca
    Kevin Dini
    Ruiqi Bao
    Wei Du
    Rui Su
    Yuan Luo
    Weijie Zhao
    Daniele Sanvitto
    Timothy C. H. Liew
    Qihua Xiong
    Nature Communications, 14
  • [39] Tunable room-temperature ferromagnetism in Co-doped two-dimensional van der Waals ZnO
    Rui Chen
    Fuchuan Luo
    Yuzi Liu
    Yu Song
    Yu Dong
    Shan Wu
    Jinhua Cao
    Fuyi Yang
    Alpha N’Diaye
    Padraic Shafer
    Yin Liu
    Shuai Lou
    Junwei Huang
    Xiang Chen
    Zixuan Fang
    Qingjun Wang
    Dafei Jin
    Ran Cheng
    Hongtao Yuan
    Robert J. Birgeneau
    Jie Yao
    Nature Communications, 12
  • [40] Room-Temperature Valley Polarization and Coherence in Transition Metal Dichalcogenide-Graphene van der Waals Heterostructures
    Lorchat, Etienne
    Azzini, Stefano
    Chervy, Thibault
    Taniguchi, Takashi
    Watanabe, Kenji
    Ebbesen, Thomas W.
    Genet, Cyriaque
    Berciaud, Stephane
    ACS PHOTONICS, 2018, 5 (12): : 5047 - 5054